可视化图标总结

目录

一、柱状图

二、环形柱状图

​​​​​​三、子弹图

四、哑铃图

五、雷达图

六、平行坐标图

七、词云图


        总结比较与排序类相关的可视化图像,包括但不限于:柱状图、环形柱状图、子弹图、哑铃图、雷达图、平行坐标图、词云图等。包括图表的特点、应用场景和使用某一工具的实现过程及结果:

一、柱状图

一)特点

        直观易懂:柱状图通过柱子的高度或长度来表示数据的大小,这种视觉呈现方式非常直观。人们可以很容易地比较不同柱子的高度,从而快速了解数据之间的差异。

        适合比较:它非常适合用于比较多个项目或类别之间的数值大小。无论是横向比较还是纵向比较,柱状图都能清晰地展示出数据之间的相对大小关系。

        数据范围适应性广:柱状图可以处理从较小到较大范围的数据。无论是个位数的数据,还是成千上万甚至更大的数值,都可以通过调整柱子的高度比例来准确地表示。

        易于添加辅助信息:可以在柱状图上添加数据标签、颜色编码等多种辅助信息来增强图表的可读性。数据标签可以直接显示每个柱子对应的数值,避免用户需要通过估算柱子高度来获取数据。颜色编码可以根据数据的类别、重要性或者趋势来区分柱子。

        灵活性强:柱状图有多种变体,如垂直柱状图(最常见的形式)、水平柱状图(当类别名称较长或者数据类别较多时,水平柱状图可以更好地展示)、堆叠柱状图(用于展示每个类别内部的组成部分。

二)应用场景

        商业领域:用于销售数据分析、市场份额分析、财务报表等。例如,企业可以通过柱状图展示各产品线的销售额、利润等,帮助管理层了解业务状况,做出决策。

        教育领域:可用来分析学生的成绩分布、不同班级的成绩比较等。比如展示不同学科的平均分,让教师和学生直观地了解各学科的学习情况。 3.科学研究:在实验数据的展示和分析中经常使用。例如,在生物学实验中展示不同处理组的实验结果,在物理学研究中展示不同条件下的测量数据等。

        社会统计:用于人口统计、经济指标分析、社会调查结果等。如展示不同地区的人口数量、失业率、人均收入等数据,帮助政策制定者了解社会状况,制定相应政策。

        媒体传播:在新闻报道、数据分析文章中,柱状图可以将复杂的数据以直观的方式呈现给读者,增强信息的可读性和吸引力。例如,报道不同国家的GDP增长情况时,使用柱状图能让读者快速了解各国的经济发展态势。

(三)代码示例

import matplotlib.pyplot as plt
import numpy as np
# 设置支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
# 生成数据
categories = ['产品A', '产品B', '产品C', '产品D']
values = [20, 35, 15, 25]
# 设置图形大小
plt.figure(figsize=(8, 6))
# 绘制柱状图
bars = plt.bar(categories, values, width=0.6, color=['r', 'g', 'b', 'y'])
# 添加数值标签
for bar in bars:
    height = bar.get_height()
    plt.text(bar.get_x() + bar.get_width() / 2, height, str(height), ha='center', va='bottom')
# 设置图表标题和坐标轴标签
plt.title('产品销售数量对比')
plt.xlabel('产品类别')
plt.ylabel('销售数量')
# 显示图表
plt.show()

四)结果

        生成一个柱状图,每个柱子代表一个产品类别,柱子高度表示销售数量,柱子上方标注了具体的数值,通过柱子高度和数值可直观比较不同产品的销售情况。

二、环形柱状图

(一)特点

        空间利用高效:环形柱状图以环形方式布局,相较于传统柱状图,在相同的展示空间内可以展示更多的数据类别,尤其适用于数据类别较多的情况,避免了柱状图因柱子过多而显得拥挤的问题。

        对比清晰直观:每个数据类别对应的柱子从圆心向外延伸,其长度代表数据的大小,能够很直观地比较不同类别数据之间的差异,便于观察数据的分布和相对大小关系。

        突出整体与部分关系:环形的结构天然地暗示了整体的概念,各个柱状部分表示整体中的不同组成部分,有助于展示各部分在总体中所占的比例,同时又能体现每个部分的具体数值。

        视觉吸引力强:环形柱状图的形式较为新颖独特,相比传统的矩形柱状图更具视觉吸引力,能够在众多图表中快速吸引观众的注意力,使数据展示更具表现力。

        数据层次分明:可以通过设置不同的环层,在同一个图表中展示多组数据系列,形成多层次的数据展示效果,便于进行多维度的数据对比和分析。

(二)应用场景

        市场分析:用于展示市场份额,例如不同品牌在某一市场中的占有率,通过环形柱状图可以清晰地看出各品牌的市场地位以及它们之间的竞争关系;也可用于分析不同产品类别在总销售额中的占比情况。

        财务领域:在财务报表中,环形柱状图可用来展示公司各项收入或支出的构成,如不同业务板块的收入贡献、各项成本在总成本中的占比等,帮助决策者快速了解公司的财务状况和资源分配情况。

        人口统计:分析人口的各种结构,如年龄结构、性别结构、地域分布等。例如,展示不同年龄段人口在总人口中所占的比例,同时通过柱子的长度体现各年龄段的具体人数。

        教育领域:可以用来呈现学生的成绩分布,如不同学科成绩在总分数中的占比,或者不同成绩段的学生人数占比;还可用于分析学校各类经费的使用情况等。

        社交媒体和网络分析:在分析用户行为数据时,环形柱状图可展示不同类型的用户活动(如点赞、评论、分享等)在总活动量中所占的比例,以及各类活动的具体数量,帮助了解用户的行为偏好和活跃度。

        项目管理:展示项目中不同任务或阶段的进度情况,以环形表示项目整体,柱子长度表示每个任务或阶段的完成程度,便于管理者直观地掌握项目的整体进展和各部分的执行情况。

三)代码示例

import matplotlib.pyplot as plt
import numpy as np
# 设置支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
# 生成数据
categories = ['品牌A', '品牌B', '品牌C', '品牌D']
values = [0.3, 0.2, 0.4, 0.1]
# 计算角度
theta = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
theta += theta[:1]
values += values[:1]
# 设置图形
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
# 绘制环形柱状图
bars = ax.bar(theta, values, width=(2 * np.pi / len(categories)), bottom=0.0)
for r, bar in zip(values, bars):
    bar.set_facecolor(plt.cm.viridis(r / max(values)))
    bar.set_alpha(0.8)
# 设置标签
ax.set_xticks(theta[:-1])
ax.set_xticklabels(categories)
ax.set_title('品牌市场份额环形柱状图')
# 显示图表
plt.show()

(四)结果

        生成一个环形柱状图,环形上的每个柱子代表一个品牌,柱子的长度表示市场份额,通过颜色区分不同品牌,可直观比较各品牌的市场份额大小以及它们在整体中的占比情况。

​​​​​​三、子弹图

(一)特点

        目标对比清晰:子弹图能够清晰地展示实际数据与目标数据之间的对比关系,让观众一眼就能看出数据是否达到预期目标。

        数据分布直观:它通过不同颜色和长度的条形来表示数据的分布情况,能直观地反映出数据在不同区间的分布状态。比如,在产品质量检测中,可以用子弹图展示不同质量等级产品的数量分布。

        信息展示丰富:子弹图可以同时展示多个相关的数据指标,如实际值、目标值、平均值、中位数等,在一个图表中提供丰富的信息,有助于用户进行全面的数据分析和比较。以学生考试成绩为例,能同时呈现班级平均分、个人成绩以及优秀线、及格线等信息。

        简洁高效:相比于一些复杂的图表,子弹图的设计简洁明了,不会给观众带来过多的视觉负担,能够快速有效地传达关键信息,适用于各种汇报和展示场合。

(二)应用场景

        销售与业绩管理:常用于展示销售业绩,对比实际销售额与目标销售额,同时还可以展示不同销售区域、团队或个人的业绩完成情况,帮助管理层及时了解销售进度,发现问题并制定相应的策略。

        项目进度跟踪:在项目管理中,可用于展示项目的实际进度与计划进度的对比,以及各项任务的完成情况,让项目团队成员和管理者能够直观地掌握项目的整体进展,及时发现潜在的延误风险。

        财务分析:例如展示公司的预算执行情况,将实际支出或收入与预算进行对比,帮助财务人员和决策者了解资金的使用情况,及时调整预算和财务策略。

        教育领域:可以用来分析学生的学习情况,如考试成绩与班级平均成绩、优秀标准的对比,帮助教师和学生了解学习成果,发现优势和不足,以便有针对性地进行教学和学习改进。

        市场调研:在市场调研中,可用于展示市场份额的变化情况,以及不同品牌或产品在各个指标上的表现对比,帮助企业了解市场竞争态势,制定市场营销策略。

(三)代码示例

import matplotlib.pyplot as plt
# 设置支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots()
ax.barh(1, 100, height=0.5, color='lightgray')  # 背景条
ax.barh(1, 75, height=0.3, color='gray')       # 实际值
ax.barh(1, 90, height=0.1, color='black')      # 目标值
ax.set_yticks([1])
ax.set_yticklabels(['KPI'])
plt.title('子弹图示例')
plt.show()

(四)结果

        生成一个子弹图,直观展示了销售目标的完成情况,包括实际值、目标值以及不同绩效区间的范围,便于分析和评估销售业绩。

四、哑铃图

(一)特点

        直观展示变化:哑铃图通过线段连接两个数据点,直观地展示同一组别在两个时间点或条件下的差异。线段的长度表示变化的大小,越长表示变化越大。

        强调对比关系: 哑铃图特别适合比较两个类别或时间点之间的数据差异。它能够清晰地展示数据的起点和终点,以及两者之间的相对位置。

        紧凑且节省空间:哑铃图在有限的空间内可以展示丰富的信息,尤其适合在仪表盘或报告中使用。

        视觉吸引力强:哑铃图的形状独特,能够吸引观众的注意力,同时提供清晰的数据对比。

        支持多组对比:哑铃图可以同时展示多个组别的数据变化,通过颜色区分不同组别。

(二)哑铃图的应用场景

        时间序列对比:用于展示同一指标在不同时间点的变化,例如疫情前后的失业率变化。

        A/B测试结果:比较不同实验组或条件下的数据差异,例如不同营销策略的效果。

        区域或组别对比:比较不同地区、部门或产品之间的指标差异。

        用户满意度调查:展示不同功能或时间段的用户满意度变化。

        基因数据分析:在生物医学领域,哑铃图可用于展示基因拷贝数变异(CNV)。

        商业分析:比较不同产品的销售额、利润率等指标,帮助识别增长机会。

注意事项

        数据量限制:哑铃图不适合展示过多的数据点,否则可能导致线条交叉,影响可读性。

        颜色和标签:使用颜色区分不同组别或时间点,同时添加标签以增强图表的可读性。

        适用性:哑铃图更适合展示变化幅度,而不是连续趋势。如果需要展示趋势变化,折线图可能是更好的选择。

(三)代码示例

import matplotlib.pyplot as plt
# 设置支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
# 数据设置
categories = ['城市A', '城市B', '城市C']
value_2020 = [50, 40, 60]
value_2021 = [55, 45, 65]
# 设置图形
plt.figure(figsize=(8, 6))
for i in range(len(categories)):
    plt.plot([value_2020[i], value_2021[i]], [i, i], marker='o', linestyle='-', color='black')
    plt.plot(value_2020[i], i, marker='o', color='r', label='2020年' if i == 0 else "")
    plt.plot(value_2021[i], i, marker='o', color='b', label='2021年' if i == 0 else "")
# 设置标签
plt.yticks(range(len(categories)), categories)
plt.xlabel('数值')
plt.title('城市GDP对比哑铃图')
plt.legend()
# 显示图表
plt.show()

(四)结果

        生成一个哑铃图,展示了不同城市在 2020 年和 2021 年的 GDP 数值变化情况,通过两个数据点和连接线清晰地呈现出各城市 GDP 的增长趋势以及两年间的数值差异。

五、雷达图

一)特点

        多维度展示:雷达图的显著特点是可以在一个图表中同时展示多个维度的数据,能够直观地反映出数据在不同维度上的表现和差异,方便对事物进行全面综合的分析。例如,在分析一个篮球运动员的综合能力时,可以通过雷达图展示其得分、篮板、助攻、防守、三分球等多个方面的能力数据。

        直观呈现数据关系:通过将各个维度的数据点连接成多边形,能清晰地展示出不同维度之间的相对关系。多边形的形状和面积可以直观地反映出数据的整体特征和分布情况。如果多边形较为规则,说明各维度数据相对均衡;如果多边形有明显的突出或凹陷部分,则表示在相应维度上的数据表现较为突出或薄弱。

        视觉效果突出:具有较强的视觉冲击力,能够吸引观众的注意力,使数据信息更加生动形象,易于理解和比较。与其他一些复杂的图表相比,雷达图能够更快速地传达数据的主要信息,让观众在短时间内对数据有一个整体的认识和把握。

二)应用场景

        综合评估:常用于对多个因素进行综合评估的场景。比如,在企业对员工的绩效考核中,可以从工作业绩、工作态度、团队协作、创新能力等多个维度进行评价,通过雷达图直观地展示每个员工在各个方面的表现,便于全面了解员工的优势和不足,为人力资源决策提供依据。

        市场调研:在市场调研中,可用于分析不同品牌或产品在多个属性上的表现。例如,对不同品牌的智能手机进行调研,通过雷达图展示它们在外观设计、性能、拍照效果、电池续航、价格等方面的用户评价,帮助企业了解自身产品与竞争对手的优势和劣势,从而制定相应的市场营销策略。

        项目管理:在项目管理中,可用于评估项目在不同阶段的进展情况。例如,从项目的进度、质量、成本、风险等多个维度进行分析,通过雷达图直观地展示项目在各个方面的执行情况,及时发现项目中存在的问题,以便采取相应的措施进行调整和优化。

        个人能力分析:可以帮助个人对自己的能力进行全面评估和分析。比如,学生可以通过雷达图分析自己在语文、数学、英语、物理、化学等各个学科上的学习成绩,了解自己的优势学科和薄弱学科,从而有针对性地制定学习计划,提高学习成绩。

(三)代码示例

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
# 生成数据
categories = ['市场份额', '盈利能力', '创新能力', '客户满意度', '员工满意度']
company_A = [0.7, 0.6, 0.8, 0.5, 0.7]
company_B = [0.6, 0.8, 0.5, 0.7, 0.6]
# 计算角度
angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
angles += angles[:1]
company_A += company_A[:1]
company_B += company_B[:1]
# 设置图形
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
# 绘制雷达图
ax.plot(angles, company_A, 'o-', linewidth=2, label='公司A')
ax.fill(angles, company_A, alpha=0.2)
ax.plot(angles, company_B, 'o-', linewidth=2, label='公司B')
ax.fill(angles, company_B, alpha=0.2)
# 设置标签
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories)
ax.set_title('企业竞争力雷达图')
ax.legend()
# 显示图表
plt.show()

(四)结果

        生成一个雷达图,展示了公司 A 和公司 B 在五个竞争力维度上的表现情况,通过两个多边形的形状和位置,可以直观比较两家公司在各维度上的优势和劣势。

六、平行坐标图

(一)特点

        多变量可视化:能够同时展示多个变量之间的关系,适合处理高维数据。它将每个变量表示为一条平行的坐标轴,数据点则以折线或点的形式连接在这些坐标轴上,让用户可以直观地观察到不同变量之间的相互关系和数据分布模式。

        数据分布展示:可以清晰地展示数据在各个变量上的分布情况。通过观察坐标轴上数据点的密集程度和分布范围,能够了解每个变量的取值范围和数据的集中趋势,以及不同变量之间数据分布的差异。

        模式识别:有助于发现数据中的模式、趋势和异常值。例如,通过观察折线的走势和聚集情况,可以发现不同变量之间的相关性,以及数据中可能存在的聚类或离群点。

        可交互性强:通常具有较好的交互性,用户可以通过缩放、排序、筛选等操作,深入探索数据的细节和特征,以便更好地理解数据之间的关系。

二)应用场景 

        数据分析与探索:在数据分析的早期阶段,用于快速了解多变量数据集的整体特征和变量之间的关系,帮助分析师发现潜在的问题和研究方向。例如,在市场调研数据分析中,可同时展示消费者的年龄、收入、购买频率、品牌偏好等多个变量,帮助企业了解消费者的行为模式和特征。

        科学研究:在生物学、物理学、气象学等科学领域,用于分析复杂的实验数据和观测数据。例如,在生物学研究中,可用于展示不同基因在多个组织中的表达水平,帮助研究人员发现基因之间的相互关系和潜在的生物学通路。

        金融风险评估:在金融领域,用于评估投资组合的风险和收益特征。可以将不同资产的收益率、波动率、相关性等多个指标作为变量,通过平行坐标图直观地展示投资组合中各资产之间的关系,帮助投资者优化投资组合,降低风险。

        医疗数据分析:在医疗领域,可用于分析患者的多维度临床数据,如症状、检查指标、治疗效果等,帮助医生全面了解患者的病情,发现疾病的潜在规律和影响因素,辅助医疗决策和研究。

(三)代码示例

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
# 生成数据
data = {
    '客户ID': [1, 2, 3, 4],
    '年龄': [25, 30, 35, 40],
    '收入': [5000, 6000, 7000, 8000],
    '消费频率': [10, 12, 8, 15]
}
df = pd.DataFrame(data)
# 设置图形
plt.figure(figsize=(10, 6))
# 绘制平行坐标图
for index, row in df.iterrows():
    plt.plot(df.columns[1:], row[1:], label=row['客户ID'])
# 设置标签
plt.xlabel('属性')
plt.ylabel('数值')
plt.title('客户属性平行坐标图')
plt.legend()
# 显示图表
plt.show()

(四)结果

        生成一个平行坐标图,展示了不同客户在年龄、收入和消费频率三个属性上的取值情况,通过不同颜色的折线可以区分不同客户,观察折线的走向可分析各客户在不同属性上的特点和差异。

七、词云图

(一)特点

        直观形象:以图形的方式呈现数据,能够快速吸引观众的注意力,使他们对文本内容的重点有一个直观的了解,无需花费大量时间阅读和分析文本。

        突出重点:根据词汇在文本中出现的频率或重要性,调整词汇的大小和颜色。出现频率高或重要性强的词汇会以较大的字体和醒目的颜色显示,从而突出文本的关键信息。

        美观简洁:具有较高的视觉吸引力,通过合理的布局和配色,能够将大量的文本信息以一种简洁、美观的方式展示出来,避免了传统文本展示方式的枯燥和冗长。

        多语言支持:可以处理多种语言的文本数据,无论是中文、英文还是其他语言,都能根据相应的词频进行展示。不过对于中文等无空格分隔的语言,需要先进行分词处理。

        可定制性强:可以根据不同的需求和主题,对词云图的形状、颜色、字体等进行定制。例如,可以将词云图制作成特定的形状,如圆形、心形或其他与主题相关的形状,以增强可视化效果。

二)应用场景

        文本分析:在对大量文本数据进行分析时,词云图可以作为一种初步的探索性工具,帮助快速了解文本的主题和重点内容。例如,在分析新闻报道、学术论文、社交媒体评论等文本时,通过词云图可以迅速把握文章的核心话题和关键观点。

        舆情监测:用于监测社交媒体、网络论坛等平台上的公众舆论。通过分析用户发布的文本内容,生成词云图,能够及时了解公众对特定事件、产品或品牌的看法和态度,发现热点话题和趋势,为企业和政府机构提供决策支持。

        教育教学:在教育领域,词云图可以帮助学生更好地理解和总结文本内容。例如,在语文教学中,让学生根据课文内容制作词云图,有助于他们把握文章的主旨和重点词汇;在英语教学中,通过词云图展示英语文章中的高频词汇,帮助学生扩大词汇量和提高阅读理解能力。

        市场调研:企业在进行市场调研时,可以利用词云图分析消费者对产品或服务的评价和反馈。通过收集消费者的在线评论、问卷调查等文本数据,生成词云图,能够直观地了解消费者关注的焦点问题、产品的优点和不足,为产品改进和营销策略调整提供依据。

        文化研究:在文化研究领域,词云图可以用于分析文学作品、历史文献等文本资料,揭示不同时期、不同文化背景下的语言特点和文化内涵。例如,通过对不同朝代诗词的词云图分析,可以了解当时的社会风貌、文化氛围和人们的情感表达。

三)代码示例

from wordcloud import WordCloud
import matplotlib.pyplot as plt
import jieba  # 用于中文分词
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
# 示例文本
text = "今天天气真好,适合出去游玩,公园里有很多人,大家都玩得很开心,希望每天都有好天气"
# 中文分词
words = " ".join(jieba.cut(text))
# 生成词云
wordcloud = WordCloud(font_path='simhei.ttf',  # 设置中文字体
                      background_color="white", width=800, height=400).generate(words)
# 设置图形
plt.figure(figsize=(10, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.title('文本分析词云图')
# 显示图表
plt.show()

四)结果

        生成一个词云图,图中 “天气”“开心”“公园” 等出现频率较高的词语字体较大且突出,直观展示了文本的主要内容和重点词汇。

        总结:总结了多种比较与排序类可视化图表,包括柱状图、环形柱状图、子弹图、哑铃图、雷达图、平行坐标图和词云图。详细介绍了每种图表的特点、应用场景以及使用工具实现的过程和结果。这些图表在商业、教育、科学研究、社会统计、媒体传播等领域有广泛应用,能够帮助用户直观地呈现数据、分析差异、评估趋势和突出重点信息。

### 下载数据可视化平台的相关图标 要从数据可视化平台下载相关图标,通常需要遵循特定的操作流程以及了解该平台的功能特性。以下是关于如何实现这一目标的具体说明: #### 平台功能概述 CARTO 是一个强大的地理数据分析与可视化平台[^1],它允许用户上传地理位置数据并将其转换为交互式地或其他形式的可视化内容。如果希望从 CARTO 或其他类似的平台上获取或导出图标文件,则需注意其支持的文件格式。 #### 支持的文件格式 大多数现代数据可视化工具都支持多种常见的像文件格式,这些格式包括但不限于 PNG、JPEG 和 SVG。PNG 和 JPEG 适用于静态片展示,而 SVG 则适合用于矢量形编辑和高分辨率需求场景。具体而言: - **PNG/JPEG**: 这些格式适合快速分享和嵌入网页中的简单表。 - **SVG**: 提供高的灵活性,尤其当需要进一步调整图标的大小而不失真时非常有用。 对于 CARTO 而言,在完成地制作之后可以通过界面选项保存成果为上述提到的标准像格式之一。 #### 获取图标资源的方法 除了直接通过像 CARTO 这样的在线服务平台来生成所需的地外,还有专门针对开发者设计的一些库可以帮助构建自定义图标。例如,《Python数据可视化:科技表绘制》一书中提及的技术栈能够指导读者利用编程语言如 Python 来创造个性化的科学表[^3]。这种方法给予使用者极大的自由度去定制每一个细节直至满足项目特殊要求为止。 另外值得注意的是,在实际操作过程中应始终考虑最终用途——即所选格式是否符合预期应用场景的要求;同时也别忘了评估版权问题以确保合法使用第三方素材。 ```python import matplotlib.pyplot as plt plt.plot([0, 1], [0, 1]) plt.savefig('output.svg', format='svg') # 将表保存为SVG格式 ``` 以上代码片段展示了如何借助 Matplotlib 库将一张简单的线形存储成矢量形文件(.svg),这仅仅是众多可能性当中的一种实践方式而已。 #### 总结 综上所述,无论是采用现成的服务型解决方案比如 CARTO ,还是依靠脚本编写来自行开发专属方案,都可以有效地达成下载数据可视化平台相关图标的目的 。重要的是明确自己期望获得什么样的输出结果,并据此挑选最合适的手段加以实施 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值