前言
博主最近在做课程设计,本文介绍的内容是在学习这类项目时觉得比较好的一个方案,还有很多方案和思路适合课程设计、毕业设计,包括项目源码、使用说明、数据、设计文档等等,都是博主在csdn学习后觉得不错的资源,一起打包放在了这里(点击查看精选:https://mbd.pub/o/bread/ZpWVmZpt点击查看全部:https://mbd.pub/o/bread/ZpWVmZpu),有需要的同学可以自取,价格实惠,绝对友情价,可以自己搜索对比下;最重要的是,比起自己去单个搜索,博主已经汇总好了这一类的知识,而且筛选过,更能够有效帮到大家做课程设计和毕业设计!!
PS:合集中包括下面的项目
resnet50迁移学习训练自己的垃圾分类数据集(python源码+项目说明)
垃圾分类图片数据集(120类)
垃圾回收、垃圾分类、提交订单(短信)的纯前端实现微信小程序源码
垃圾邮件分类系统源码+项目说明(解码,特征提取,分类算法)
城市垃圾管理系统源码+项目说明+数据库(实现了转运位置查询、车辆路径规划、城市垃圾产量统计、垃圾分类查询功能)
基于CNN的垃圾邮件分类系统源码+项目说明
基于Python的实时垃圾分类系统源码+项目说明+数据集
基于QT+mysql搭建的垃圾分类查询系统源码+项目说明
基于ResNet50的迁移学习对华为垃圾数据集的分类系统源码+项目说明
基于python深度学习的垃圾分类系统(模型使用ONNX导入)-期末大作业
基于python的分类,检测,换脸技术源码,各种调参技巧和tricks,卷积结构详细解析可视化,注意力机制代码等详解!本次垃圾分类挑战杯,目的在于构建基于深度学习技术的图像分类模型,实现垃圾图片类别的精准识别,大赛参考深圳垃圾分类标准,按可回收物、厨余垃圾、有害垃圾和其他垃圾四项
基于python的对垃圾短信进行分类源码+项目说明
基于springBoot的垃圾分类识别的小程序源码+项目说明
基于tensorflow的小型邮件分类系统源码+项目说明(可区分私人邮件,工作邮件和垃圾邮件)
基于vue+springboot+mysql的垃圾分类管理系统源码+项目说明
基于图像识别的智能垃圾分类微信小程序“垃圾分类识别管理”(源码+项目说明)
基于深度学习的垃圾分类实战源码(基于CNN和ResNET)
基于深度学习的垃圾分类微信小程序源码+项目说明
基于深度学习的垃圾分类源码+项目说明
基于深度学习的垃圾分类源码
基于深度网络的垃圾识别与分类算法研究源码(高分毕设)
天池Apache Flink极客挑战赛-垃圾图片分类算法源码+项目说明
智能垃圾分类系统源码
某城市垃圾分类收运系统源码+项目说明
下面正式介绍本文标题所对应的项目案例:
基于 Pytorch的垃圾识别与分类系统
随着全球范围内垃圾处理问题的日益严重,垃圾识别与分类技术成为了解决这一问题的关键手段。基于[深度学习]的垃圾识别与分类系统,尤其是利用PyTorch这样的强大框架,已经展现出了显著的成效。本文将对该系统的设计与实现进行综述,介绍其基本原理、关键技术、以及应用前景。
一、基本原理
基于[PyTorch]的垃圾识别与分类系统主要利用卷积神经网络(CNN)进行图像特征的提取和分类。CNN通过多层卷积、池化和全连接操作,能够从输入的垃圾图像中自动学习并提取出有用的特征信息。这些特征信息随后被用于训练分类器,以实现对垃圾图像的准确分类。
二、关键技术
数据预处理:由于垃圾图像数据通常具有多样性、复杂性和噪声等特点,因此需要对数据进行预处理以提高模型的性能。这包括图像缩放、归一化、增强等操作,以及标签的编码和转换。
模型构建:选择合适的CNN结构是系统设计的关键。常用的CNN结构包括AlexNet、VGGNet、ResNet等。这些结构具有不同的深度和复杂度,可以根据具体任务的需求进行选择和调整。
训练与优化:使用PyTorch框架进行模型的训练和优化。这包括选择合适的损失函数、优化器、学习率等超参数,以及进行模型的迭代训练和调整。同时,还需要利用验证集进行模型性能的评估,以防止过拟合现象的发生。
部署