将 OpenCV Java 与 Eclipse 结合使用

本文详细指导如何在Eclipse中配置OpenCV库,包括下载、解压、添加用户库、处理MKL依赖的错误,以及在新项目中测试。适合Java开发者和机器学习初学者。
摘要由CSDN通过智能技术生成

配置 Eclipse

首先,从下载页面获取 OpenCV 的新版本,并将其解压缩到一个简单的位置,例如 .我使用的是 2.4.6 版,但其他版本的步骤或多或少相同。C:\OpenCV-2.4.6\

现在,我们将 OpenCV 定义为 Eclipse 中的用户库,因此我们可以在任何项目中重用该配置。启动 Eclipse 并从菜单中选择 Window –> Preferences。

1-window-preferences.png

在“Java”>“构建路径”>“用户库”下导航,然后单击“新建...”。

2-user-library-new.png

输入新库的名称,例如 OpenCV-2.4.6。

3-library-name.png

现在选择您的新用户库,然后单击添加外部 JAR...。

4-add-external-jars.png

浏览并选择 opencv-246.jar。添加 jar 后,扩展 opencv-246.jar 并选择本机库位置,然后按编辑...。C:\OpenCV-2.4.6\build\java\

5-native-library.png

选择外部文件夹...并浏览以选择文件夹 。如果您使用的是 32 位系统,则需要选择 x86 文件夹而不是 x64。C:\OpenCV-2.4.6\build\java\x64

6-external-folder.png

您的用户库配置应如下所示:

7-user-library-final.png

在新的 Java 项目上测试配置

现在开始创建一个新的 Java 项目。

7_5-new-java-project.png

在“Java 设置”步骤的“库”选项卡下,选择“添加库...”并选择 OpenCV-2.4.6,然后单击 Finish。

8-add-library.png

9-select-user-lib.png

库应如下所示:

10-new-project-created.png

现在您已经创建并配置了一个新的 Java 项目,是时候测试它了。创建新的 java 文件。为方便起见,以下是入门代码:

导入 org.opencv.core.Core;
导入 org.opencv.core.CvType;
导入 org.opencv.core.Mat;
public class 你好
{
public static void main( 字符串[] 参数 )
{
System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
垫子垫子 = Mat.eye( 3, 3, CvType.CV_8UC1 );
System.out.println( “垫子 = ” + mat.dump() );
}
}

运行代码时,应看到 3x3 单位矩阵作为输出。

就是这样,每当您开始一个新项目时,只需将您定义的 OpenCV 用户库添加到您的项目中,您就可以开始了。享受强大、不那么痛苦的开发环境:)

运行具有 OpenCV 和 MKL 依赖项的 Java 代码

如果您使用 MKL 库构建了 OpenCV,并且使用一些调用使用英特尔 MKL 的 OpenCV 函数的 Java 代码,您可能会收到以下错误(例如在 Ubuntu 上):

英特尔 MKL 致命错误:无法加载 libmkl_avx2.so 或 libmkl_def.so。

在 Linux 上解决此问题的一个解决方案是预加载英特尔 MKL 库(在终端中运行命令或将其添加到文件中)。你的命令行应该类似于这个(如果你已经设置了变量,请添加before):.bashrc$LD_PRELOAD:LD_PRELOAD

导出 LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so

然后,从设置了此环境变量 () 的终端运行 Eclipse IDE,错误应该会消失。echo $LD_PRELOAD

   在线教程

有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

请添加图片描述

人工智能书籍

第一阶段:零基础入门(3-6个月)

新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。

第二阶段:基础进阶(3-6个月)

熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。

第三阶段:工作应用

这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。

 有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值