Tree-RAG工作流程及实体树应用介绍

文章介绍了T-RAG方法,一种利用检索增强生成技术,结合微调的大型语言模型和实体树向量数据库的问答系统。研究者通过实例展示了如何通过树搜索和上下文生成来提高性能,并提出Correct-Verbose评估指标。该系统强调了对组织实体的理解和隐私保护的重要性。
摘要由CSDN通过智能技术生成

image.png

引言

T-RAG方法基于将检索增强生成(Retrieval-Augmented Generation,简称RAG)架构与开源经过微调的大型语言模型(Large Language Model,简称LLM)以及实体树向量数据库相结合。这种方法的重点在于上下文检索。

具体来说,T-RAG系统:

  • 首先利用RAG架构进行信息检索,这一架构通过结合检索到的文档片段和生成的文本来生成响应。
  • 通过在开源的LLM上进行微调,使得模型能够更好地理解和适应特定组织的需求和术语。

此外,T-RAG还包括了一个实体树向量数据库,这个数据库存储了组织内部实体的详细信息及其层级结构。在处理用户查询时,系统不仅会搜索相关的文档片段,还会检测查询中提到的任何组织相关实体,并将这些实体的详细信息整合到生成的上下文中。

本文分享了在私有文件上部署问答系统的LLM应用的经验,使用了一种名为Tree-RAG(T-RAG)的系统,该系统结合了实体层次结构以提高性能。

亮点

在论文中,研究人员开发了一个应用,该应用将检索增强生成(RAG)与微调后的开源大型语言模型(LLM)结合在一起,用于生成响应。这个模型是使用指令数据集进行训练的。

他们引入了一个新颖的评估指标,称为Correct-Verbose,旨在评估生成响应的质量。这个指标根据其正确性评估响应,同时考虑包含超出原始问题范围的额外相关信息。

T-RAG

以下是Tree-RAG(T-RAG)的工作流程:

image.png

对于给定的用户查询,搜索向量数据库以寻找相关的文档片段,这些片段作为LLM在上下文学习中的参考知识。

如果查询提到了有组织性的实体,那么将从实体树中提取关于这些实体的信息,并添加到上下文中。

最终使用微调的Llama-2 7B模型根据输入的数据生成响应。

T-RAG的一个特点是除了向量数据库用于上下文检索之外,还包括了一个实体树

实体树

T-RAG的一个显著特点是其结合了实体树和向量数据库来进行上下文检索。实体树存储了组织性的实体及其层级安排的详细信息。

这里所说的组织性是指:很多时候,一些概念本身是有组织的,比如一家公司的各个部门,会有一些层级关系。树中的每个节点代表一个实体,父节点表示其所属的一个更广义的实体,比如一个小组的父节点是其所属的部门。

在检索过程中,框架利用实体树来增强从向量数据库检索到的上下文。

实体树搜索和上下文生成的详细过程如下:

  1. 一个解析模块扫描用户查询,寻找与组织内实体名称相对应的关键词。
  2. 一旦识别出一个或多个匹配项,就从树中提取每个匹配实体的详细信息。
  3. 这些细节被转换成文本陈述,提供有关实体及其在组织层级中位置的信息。
  4. 随后,这些信息与从向量数据库检索到的文档片段合并,构建上下文。
  5. 由此,当用户询问有关实体时,模型可以获得有关实体及其在组织层级中的定位的相关信息。

例子

如下图所示:

image.png

这里使用了一个组织结构树,来展示如何执行树搜索和检索。

除了获取上下文文档外,还使用spaCy库和自定义规则来识别组织内的命名实体。

如果查询包含一个或多个这样的实体,将从树中提取有关实体层级位置的相关信息,并将其转换为文本陈述。然后,这些陈述被整合到上下文中,与检索到的文档一起使用。

然而,如果用户的查询没有提到任何实体,那么将省略树搜索过程,只使用从检索到的文档中获取的上下文以加速响应。

总结

这项研究结合了检索增强生成(RAG)和微调技术。同时,使用在本地部署的开源模型来解决数据隐私问题,。

此外,通过spaCy框架使用实体进行实体搜索和上下文生成也很有趣。通过这种方式,T-RAG能够在提供准确和相关响应的同时,保持对上下文的敏感性和对组织内部结构的理解。这种结合检索、生成和实体检测的方法,为构建高效、可靠的问答系统提供了一种有效的解决方案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

  • 17
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值