大模型入门(四)—— 基于peft 微调 LLaMa模型

llama-7b模型大小大约27G,本文在单张/两张 16G V100上基于hugging face的peft库实现了llama-7b的微调。

1、模型和数据准备

使用的大模型:https://huggingface.co/decapoda-research/llama-7b-hf,已经是float16的模型。

微调数据集:https://github.com/LC1332/Chinese-alpaca-lora/blob/main/data/trans_chinese_alpaca_data.json

微调的代码已上传到github:https://github.com/jiangxinyang227/LLM-tuning/tree/master/llama_tuning

2、微调技巧

1)lora微调。float16的模型刚刚好存放在16G的GPU上,没有太多显存用于存放梯度、优化器等参数,因此在这里使用lora微调部分参数。

2)混合精度训练,因为llama-7b有27g,想在单张V100上加载就需要转换成float16才行,而lora参数用的是float32,需要使用混合精度训练。同时混合精度训练也会有所加速。

3)梯度累积,单张gpu在存放完模型参数,lora参数、梯度、优化器等参数之后只剩下很少的显存给到输入输出等中间变量,经测试单张V100的极限大致是batch size=1,sequence length=200,只能使用梯度累积实现mini-batch训练。

4)当有多张卡时,可以使用数据并行、模型并行等方法微调,数据并行只是将模型复制到每张GPU上,因此单张GPU的batch size仍然只能是1,模型并行会将模型均分到每个GPU上,可以增大每张GPU上的batch size,在2张V100上测试了ddp(数据并行)和 基于zero-3 + cpu offload(数据并行+模型并行+CPU)。

3、要注意的代码讲解

3.1 data_helper.py

****data_helper.py中主要注意下tokenizer()函数,一是padding是在左边padding,和我们通常的右边padding不太一样;二是labels中的pad_id=-100,因为pytorch中label=-100时不参与loss的计算。

def tokenize(self, prompt, add_eos_token=True):
        # there's probably a way to do this with the tokenizer settings
        # but again, gotta move fast
        result = self.tokenizer(
            prompt,
            truncation=True,
            max_length=self.sequence_len,
            padding=False,
            return_tensors=None
        )
        input_ids, attention_mask, labels = [], [], []
        if (
            result["input_ids"][-1] != self.eos_token_id
            and len(result["input_ids"]) < self.sequence_len
            and add_eos_token
        ):
            result["input_ids"].append(self.eos_token_id)
            result["attention_mask"].append(1)
        
        pad_len = self.sequence_len - len(result["input_ids"])
        if pad_len <= 0:
            input_ids = result["input_ids"][:self.sequence_len]
            attention_mask = result["attention_mask"][:self.sequence_len]
            labels = input_ids.copy()
        else:
            input_ids = [self.pad_token_id] * pad_len + result["input_ids"]
            attention_mask = [0] * pad_len + result["attention_mask"]
            labels = [self.label_pad_token_id] * pad_len + result["input_ids"]
            
        return input_ids, attention_mask, labels

3.2 metric.py

在指标计算中只实现了准确率,在这里要注意的是生成任务是前n-1个token生成第n个token,因此这里的预测结果和label要做一次不同的移位,即

pred_y = pred_y[:-1]

true_y = true_y[1:]

只要注意这里就好了,剩下的你需要计算什么指标都可以。

def accuracy(pred_ys, true_ys, masks):
    total = 0
    corr = 0

    for pred_y, true_y, mask in zip(pred_ys, true_ys, masks):
        # 做一层转换,让生成的结果对应上预测的结果,即前n-1个token预测第n个token
        pred_y = pred_y[:-1]
        true_y = true_y[1:]
        mask = mask[:-1]
        
        for p, t, m in zip(pred_y, true_y, mask):
            if m == 1:
                total += 1
                if p == t:
                    corr += 1
    
    return corr / total if total > 0 else 0

4、训练方式

4.1 单GPU训练

单GPU训练很好理解,训练的时候只要注意下面的一段代码即可,混合精度训练+梯度累积

                with autocast(): 
                    loss, predictions = self.model(input_ids, attention_mask, labels)

                # 梯度累积训练
                loss /= self.accu_steps
                # loss.backward()

                # 放大loss,并求梯度
                scaled_loss = self.scaler.scale(loss)
                scaled_loss.backward()

                if current_step % self.accu_steps == 0:

                    # 先将梯度缩放回去,再执行梯度裁剪
                    self.scaler.unscale_(self.optimizer)

                    clip_grad_norm_(self.model.parameters(), 1.0)

                    self.scaler.step(self.optimizer)

                    self.scheduler.step()
                    self.scaler.update()
                    self.optimizer.zero_grad()

4.2 多GPU + DDP训练

DDP训练也是大家最常用的方法,尤其是在模型没那么大的情况下,DDP训练就是主流,就不多赘述,在这里值得注意的是,每个GPU会分担一部分数据,在验证的时候如果需要拿到全部数据的验证结果并输出时,需要通过dist.all_gather 或者 dist.gather的方法将验证集的结果聚合到一块。详细代码见https://github.com/jiangxinyang227/LLM-tuning/blob/master/llama_tuning/lora_ddp/trainer.py

def eval(self):
        self.model.eval()
        with torch.no_grad():
            eval_losses = []
            eval_word_preds = []
            eval_word_labels = []
            eval_masks = []
            for batch_data in self.valid_data_loader:
                input_ids = batch_data[0].cuda()
                attention_mask = batch_data[1].cuda()
                labels = batch_data[2].cuda()

                with autocast():
                    loss, predictions = self.model(input_ids, attention_mask, labels)

                # 获取所有gpu上输出的数据
                avg_loss_multi_gpu = reduce_value(loss, average=True)
                gather_preds = [torch.zeros_like(predictions, dtype=predictions.dtype) for _ in range(Config.world_size)]
                gather_labels = [torch.zeros_like(labels, dtype=labels.dtype) for _ in range(Config.world_size)]
                gather_masks = [torch.zeros_like(attention_mask, dtype=attention_mask.dtype) for _ in range(Config.world_size)]
                gather_value(predictions, gather_preds)
                gather_value(labels, gather_labels)
                gather_value(attention_mask, gather_masks)

                eval_losses.append(float(avg_loss_multi_gpu))
                for pred, label, mask in zip(gather_preds, gather_labels, gather_masks):
                    eval_word_preds.extend(pred.tolist())
                    eval_word_labels.extend(label.tolist())
                    eval_masks.extend(mask.tolist())
            
            if is_main_process():
                acc = accuracy(pred_ys=eval_word_preds, true_ys=eval_word_labels, masks=eval_masks)

                logger.info("\n")
                logger.info("eval: num: {},  loss: {}, acc: {}".format(
                    len(eval_word_preds), mean(eval_losses), acc))
                logger.info("\n")

4.3 deepspeed的zero-3 + cpu offload

在这里使用的是hugging face的accelerate库中的deepspeed方法,zero-3会将模型、梯度、优化器参数都分割到不同的GPU,并且使用cpu offload将一些中间变量放到cpu上,经实测使用两张GPU时,每张GPU的使用大概5个G多一点,单张卡的batch size可以设置到8,但是在实际训练过程中速度比DDP还要慢一点,这里的原因还是因为模型并行、CPU offload等带来了大量的通信工作,所以单张gpu能存放一整个模型时还是首推DDP。

使用accelerate中的deepspeed时,首先要通过accelerate config这个命令互动式配置训练参数,以下是我在配置时选择的参数

在使用deepspeed时可以通过json文件去配置其他参数,accelerate config只配置一些通用参数。zero-3 + cpu offload的json文件如下,配置的时候有几个参数(如allgather_bucket_size 和 reduce_bucket_size)要设小一点,不然显存会爆掉,默认的值会比较大,主要是V100太小了。

{
    "fp16": {
        "enabled": true,
        "loss_scale": 0,
        "loss_scale_window": 1000,
        "initial_scale_power": 16,
        "hysteresis": 2,
        "min_loss_scale": 1
    },
    "optimizer": {
        "type": "AdamW",
        "params": {
            "lr": 3e-4,
            "weight_decay": 0.0
        }
    },
    "scheduler": {
        "type": "WarmupDecayLR",
        "params": {
            "warmup_min_lr": "auto",
            "warmup_max_lr": "auto",
            "warmup_num_steps": "auto",
            "total_num_steps": "auto"
        }
    },
    "zero_optimization": {
        "stage": 3,
        "offload_optimizer": {
            "device": "cpu",
            "pin_memory": true
        },
        "offload_param": {
            "device": "cpu",
            "pin_memory": true
        },
        "overlap_comm": true,
        "contiguous_gradients": true,
        "allgather_bucket_size": 1e6,  # 参数要小,不然容易内存爆掉
        "reduce_bucket_size": 1e6,  # 参数要小,不然容易内存爆掉
        "stage3_prefetch_bucket_size": 1e6,  # 参数要小,不然容易内存爆掉
        "stage3_param_persistence_threshold": 1e6,  # 参数要小,不然容易内存爆掉
        "sub_group_size": 1e9,
        "stage3_max_live_parameters": 1e9,
        "stage3_max_reuse_distance": 1e9,
        "stage3_gather_16bit_weights_on_model_save": true
    },
    "gradient_accumulation_steps": 1,
    "gradient_clipping": 1.0,
    "steps_per_print": 2000,
    "train_batch_size": "auto",
    "train_micro_batch_size_per_gpu": "auto",
    "wall_clock_breakdown": false
}

在使用的时候有一个问题一直没有解决,保存模型时,保存完之后会出现GPU1掉线的情况,所以在这里将保存模型放在整个训练结束后保存,这个问题还没找到解决的办法,有知道怎么解的还麻烦指导下。

如果在运行时报这样的错误的话:

Traceback (most recent call last):
  File "/mnt/workspace/project/llm/local_proj/chatglm_tune/lora_deepspeed/trainer.py", line 271, in <module>
    main()
  File "/mnt/workspace/project/llm/local_proj/chatglm_tune/lora_deepspeed/trainer.py", line 265, in main
    trainer = Trainer()
  File "/mnt/workspace/project/llm/local_proj/chatglm_tune/lora_deepspeed/trainer.py", line 93, in __init__
    self.model, self.optimizer, self.train_data_loader, self.valid_data_loader, self.scheduler = self.accelerator.prepare(
  File "/home/pai/lib/python3.9/site-packages/accelerate/accelerator.py", line 1118, in prepare
    result = self._prepare_deepspeed(*args)
  File "/home/pai/lib/python3.9/site-packages/accelerate/accelerator.py", line 1415, in _prepare_deepspeed
    engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs)
  File "/home/pai/lib/python3.9/site-packages/deepspeed/__init__.py", line 165, in initialize
    engine = DeepSpeedEngine(args=args,
  File "/home/pai/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 308, in __init__
    self._configure_optimizer(optimizer, model_parameters)
  File "/home/pai/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 1173, in _configure_optimizer
    self.optimizer = self._configure_zero_optimizer(basic_optimizer)
  File "/home/pai/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 1463, in _configure_zero_optimizer
    optimizer = DeepSpeedZeroOptimizer_Stage3(
  File "/home/pai/lib/python3.9/site-packages/deepspeed/runtime/zero/stage3.py", line 298, in __init__
    largest_partitioned_param_numel = max([
  File "/home/pai/lib/python3.9/site-packages/deepspeed/runtime/zero/stage3.py", line 299, in <listcomp>
    max([max(tensor.numel(), tensor.ds_numel) for tensor in fp16_partitioned_group])
ValueError: max() arg is an empty sequence

具体原因不知道为什么会导致这样,可以进入到/home/pai/lib/python3.9/site-packages/deepspeed/runtime/zero/stage3.py(具体的路径看报错的日志)文件中,将

largest_partitioned_param_numel = max([
            max([max(tensor.numel(), tensor.ds_numel) for tensor in fp16_partitioned_group])
            for fp16_partitioned_group in self.fp16_partitioned_groups
        ])

改成

largest_partitioned_param_numel = max([
            max([max(tensor.numel(), tensor.ds_numel) for tensor in fp16_partitioned_group])
            for fp16_partitioned_group in self.fp16_partitioned_groups if len (fp16_partitioned_group) > 0
        ])

即可运行。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

  • 27
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在实战操作中,PEFT库可以用来微调BERT模型,以进行文本情感分类任务。首先,我们需要准备一个包含大量文本和标签的数据集,用于训练和验证BERT模型。然后,我们需要利用PEFT库中提供的工具和接口,将数据集转换成BERT模型可接受的格式,并进行数据预处理,如分词和填充等操作。 接着,我们可以利用PEFT库中提供的预训练模型,加载BERT模型的参数和网络结构,并在数据集上进行微调微调的过程中,我们可以通过调整学习率、批大小和训练轮数等超参数,来优化模型的性能。在每个训练轮数结束后,我们可以利用PEFT库中的评估工具对模型进行评估,以了解模型在验证集上的性能表现。 最后,当模型在验证集上的性能达到满意的水平后,我们可以使用PEFT库提供的保存模型工具,将微调后的BERT模型保存下来,以备在实际应用中使用。通过PEFT库的实战操作,我们可以有效地利用BERT模型进行文本情感分类任务,提高模型的准确性和泛化能力,从而更好地满足实际应用的需求。 PEFT库的实战操作不仅帮助我们更好地理解和使用BERT模型,也为我们提供了一套完整的工具和流程,使得模型训练和应用变得更加简单和高效。 PEFT库实战(一): lora微调BERT(文本情感分类) 的操作流程清晰,易于上手,为我们在文本情感分类任务中的应用提供了有力的支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值