这一周真的是热闹,谁能料到,国产大模型 DeepSeek 的发布竟然引发了英伟达股价的滑跌。DeepSeek 不仅震动了硅谷,还超越了 ChatGPT,成功登顶美区 APP Store 下载第一!近日,Sam Altman 更是打破沉默,公开承认 DeepSeek 的实力,这波操作简直堪称科技界的“大地震”。
DeepSeek-R1 作为 AI 领域又一重要的进展,对机器学习研发社区来说,它的发布意义重大。
主要原因包括:
-
它是一个开放权重模型,并且提供了蒸馏版本;
-
它分享并反思了一种新的训练方法,可以用于复现类似 OpenAI O1 这样的推理型模型。
在本文中,我们将深入探讨 DeepSeek-R1 的构建过程。文前给大家带来一个好消息,本文作者 Jay Alammar 同时也是美亚畅销大模型图书 Hands-On Large Language Models 的作者,本书中文版《图解大模型》将于 2025 年 4 月上市,没错,就是下面这本👇,小伙伴们敬请期待呀!
回顾:三步创建高质量 LLM 的方法
与传统 LLM 逐词生成不同,DeepSeek-R1 通过生成思维链标记,深入处理数学与推理问题,其训练分三步。
下图是“袋鼠书”第 12 章,展示了通过三个步骤创建高质量 LLM 的一般方法:
-
语言建模:基于海量网络数据训练基础模型;
-
监督微调(SFT):提升模型指令遵循与问题解答能力;
-
偏好调整:对齐人类偏好,生成最终可用模型。
DeepSeek-R1 训练流程
DeepSeek-R1 遵循以下总体流程:模型训练第一步的细节来自于之前 DeepSeek-V3 的论文。
R1 使用该论文中的基础模型,并仍然经过监督式微调(SFT)和偏好微调步骤,但其执行方式有所不同。
在 R1 的创建过程中,有三点特别值得强调。
1.长链推理监督微调****(SFT)数据
这一过程包含 60 万个长思维链推理示例。这些示例非常难以获取,而且人工标注成本非常高。这就是为什么其生成流程成为值得关注的第二大技术亮点。
2.阶段性高质量推理大语言模型(但在非推理任务上表现较弱)
该数据由 R1 的前身模型创建——这是一个未命名但专精推理的兄弟模型。该模型的灵感来源于名为 R1-Zero 的第三代模型(后文将详细讨论)。
其重要性不在于作为可直接使用的优质大语言模型,而在于其构建过程仅需极少量的标注数据配合大规模强化学习,最终造就了一个擅长解决推理问题的模型。
通过这个未命名的专业推理模型生成的输出结果,可进一步训练出更通用的模型。这类通用模型在保持其他非推理任务达到用户对大语言模型预期水平的同时,也能完成复杂推理任务。
3.运用大规模强化学习(RL)构建推理模型
这一过程分为两步:
3.1 大规模推理导向强化学习(R1-Zero)
在这里,强化学习(RL)被用来创建一个中间推理模型。该模型随后用于生成监督微调和推理示例。
而使得创建这个模型成为可能的关键在于:该实验创建了一个名为 DeepSeek-R1-Zero 的前身模型。
R1-Zero 的特殊之处在于,它无需使用带标签的监督式微调(SFT)训练集,就能在推理任务中表现出色。其训练过程直接从预训练的基础模型开始,通过强化学习(RL)训练流程完成(跳过了 SFT 阶段)。它的表现如此优异,甚至可以与 o1 模型相媲美。
**一直以来,数据始终是决定机器学习模型能力的关键要素。**那么这个模型是如何打破这一定律的?这涉及两个关键因素:
-
现代基础模型已经达到了质量和能力的阈值(这个基础模型是在 14.8 万亿个高质量 token 上训练的)。
-
与普通的聊天或写作任务不同,推理类问题可通过自动化方式进行验证和标注。让我们通过一个例子来说明。
以下是强化学习(RL)训练步骤中的一个典型提示词:
写一段 Python 代码,接收数字列表并返回排序后的结果,但是需要在列表开头添加数字 42。
像这样的问题适合通过多种方式进行自动验证。假设我们将这个问题提供给正在训练中的模型,它会生成一个答案:
-
代码格式验证:用代码检查工具(linter)来验证这个答案是否为正确的 Python 代码。
-
运行时验证:直接运行 Python 代码,看它是否能正常执行。
-
功能验证:借助现代代码大模型自动生成单元测试(即使这些大模型本身并非推理专家),验证代码是否满足功能要求。
-
性能优化:更进一步,可测量代码执行时间,在训练过程中引导模型优先选择性能更优的解决方案——即使其他方案同样是正确的 Python 程序。
通过这种方式,我们可以在训练过程中向模型提出类似的问题,并获得多种可能的解决方案。
通过自动检查(无需人工干预),我们发现:
-
第一个答案根本不是代码,
-
第二个是代码,但不是 Python 代码,
-
第三个是一个看似可行的解决方案,但没有通过单元测试,
-
第四个才是正确的解决方案。
这些自动化生成的训练信号都能直接用于模型优化。这一过程自然需要在小批量样本中处理大量案例,并通过连续训练迭代,逐步优化。
正如论文图 2 所示,在强化学习训练过程中,正是通过这些奖励信号与模型参数更新的动态反馈机制,模型得以在各项任务中持续提升表现。
图2:在训练过程中,DeepSeek-R1-Zero 的 AIME 准确率。对于每个问题,我们会采样 16 个响应并计算总体平均准确率,以确保评估的稳定性。
模型能力的提升与生成内容长度的增加呈现对应关系——随着处理问题复杂度的提高,模型会生成更多用于推理的思维标记(thinking tokens)。
图3:在强化学习过程中,DeepSeek-R1-Zero 在训练集上的平均响应长度。DeepSeek-R1-Zero 自然地学会了通过更多的思考时间来解决推理任务
这个过程是有用的,但尽管 R1-Zero 模型在推理问题上得分很高,它还存在其他缺陷,导致实际可用性不及预期。
尽管 DeepSeek-R1-Zero 展现出强大的推理能力,并能自主地发展出意想不到且强大的推理行为,但它仍然面临一些挑战。例如,DeepSeek-R1-Zero 生成的内容可读性差、语言混杂等问题。
R1 的目标旨在实现更优的实用性。因此,R1 并没有完全依赖强化学习过程,而是在以下两个环节进行了优化(如本节前文所述):
(1)构建中间推理模型来生成监督式微调( SFT )数据点
(2)训练 R1 模型以提升推理和非推理问题的处理能力(使用其他类型的验证器)
3.2 利用中间推理模型创建监督微调(SFT)推理数据
为使中间推理模型更具实用性,需对其进行监督式微调(SFT)训练,训练数据包含数上千个推理问题案例(部分由 R1-Zero 生成并筛选)。论文将此称为“冷启动数据”。
2.3.1 冷启动
与 DeepSeek-R1-Zero 不同,为了避免基础模型在强化学习训练初期出现不稳定的冷启动阶段,我们对 DeepSeek-R1 构建并收集了少量的长思维链(CoT)数据来进行微调模型,将其作为强化学习(RL)的初始执行体。采用长思维链作为示例进行少样本提示学习,直接通过提示词引导模型生成包含反思和验证的详细答案,以可读格式采集 DeepSeek-R1-Zero 的输出,收集 DeepSeek-R1-Zero 的输出并以可读格式呈现,然后通过人工标注者的后处理来优化结果。
但问题来了——既然已有这类数据,为何仍需依赖强化学习(RL)流程?
核心症结在于数据规模的鸿沟。冷启动数据集可能仅有 5000 个样本(尚可人工收集),但要训练完整的 R1 模型需要 60 万个样本。
中间推理模型正是为了弥合这一差距,通过合成生成海量高价值训练数据而存在。
如果你初次接触监督式微调(Supervised Fine-Tuning, SFT)概念,其核心流程是通过向模型提供"输入提示(prompt)"与"正确输出(correct completion)"配对的训练示例来进行优化。
以下图展示了几个 SFT 训练示例,示例来源:“袋鼠书”第 12 章。
3.3 通用强化学习(RL)训练阶段
这使得 R1 模型不仅在推理任务中表现卓越,还能胜任各类非推理任务。
其训练机制与前述强化学习流程类似,但针对非推理类应用场景进行了扩展优化——通过引入实用性奖励模型与安全性奖励模型(类似Llama模型的机制)对相关应用的提示进行多维评估。
这种复合奖励机制确保模型在扩展应用边界时,既能保持输出有效性,又能遵循安全伦理规范。
4.架构
DeepSeek-R1 沿袭了 GPT-2、GPT-3 等经典模型的架构范式,基于 Transformer 解码器模块堆叠构建。其结构特性如下:
-
总层数:共包含 61 层 Transformer 解码器模块
-
底层结构:前 3 层为密集全连接层(Dense Layers)
-
高层优化:剩余 58 层采用专家混合架构( Mixture of Experts, MoE)关于 MoE 的直观解析,可参阅“袋鼠书”另一个作者 Maarten 的权威指南:混合专家模型(MoE)视觉化指南 )
这种分层设计融合了基础模型的稳定性和 MoE 架构的高效性,在保证推理能力的同时显著提升计算资源利用率。
链接:
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts
关于模型维度大小和其他参数方面,它们如下所示:
结论通过这些内容,你应该对 DeepSeek-R1 模型有了一个直观的理解。
如果你觉得需要一些更基础的信息来理解这篇文章,我建议你仔细阅读 Hands-On Large Language Models ,这绝对是你学习 LLM 的不二之选。
这本书的中文版《图解大模型》,将于 2025 年 4 月上市。
英文版封面,中文版封面
《图解大模型》
Jay Alammar,Maarten Grootendorst | 著
李博杰 | 译
美亚 4.7 星评,畅销书 Hands-on 系列新作。只要具备 Python 基础,就可以通过本书学习大语言模型,并将大语言模型的能力应用到真正的 AI 实践中。
本书将为 Python 开发人员提供使用大模型的实用工具和概念,帮助大家掌握实际应用场景。你将学习如何利用预训练的大型语言模型进行文案撰写、文本摘要、语义搜索等任务,构建超越关键词匹配的智能系统。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓