0 基础,不限流!满血 DeepSeek R1 搭建个人知识库,支持个性化定制

DeepSeek R1 推理模型凭借其卓越性能,能够高效解决很多深度问题,然而,官方的服务的限流问题却在我们使用过程带来了诸多不便,导致我们的“使用焦虑”。那么,如何实现真正的 “满血、高速、不限流、超长上下文” 的运行效果呢?为此,我们特别推出本期教程,教您如何部署专属的 DS 服务,彻底摆脱限流困扰,不仅支持知识库的使用,还可以随时将知识库分享出去,为客服等业务场景提供强大助力。依托阿里云的强大算力,助力您轻松实现“DS 自由”。

本期教程将基于阿里云百炼和云应用开发平台(CAP),详细为您讲解专属满血 R1 模型的部署与调用方法,助力您开启高效 AI 推理之旅。

用途及价值

该方案的优势在于操作简便,即使是普通用户,也能通过应用模板一键完成部署,无需了解复杂的服务器操作流程。部署完成后,用户可结合自身需求,灵活接入个性化数据库,实现多样化应用场景。

例如,用户可以收集健康领域的专业书籍,将其录入知识库,进而搭建家庭医生智能助理,为家庭成员提供便捷的健康咨询与建议;又如,用户可以收集最新的行业动态信息,录入知识库后,结合微信机器人搭建行业资讯平台,实时掌握行业前沿动态;此外,用户还可借助该方案搭建专属的AI绘图工具,让AI根据需求绘制所需图像,助力创意表达与设计工作。

通过这一方案,用户能够快速构建个性化、智能化的应用场景,满足个人不同领域的多样化需求,实现高效、便捷的智能服务体验。

部署方案

部署架构

本次部署架构如下图,整个服务的关联上下游如图所示。使用的服务软件为 AgentCraft,AgentCraft 是一个 Serverless 架构的智能体平台,相比于 Dify,Coze 其优势在于高度 Serverless 化,真正的按需服务,完美兼容 Serverless Devs 的社区生态,可以复用 Serverless Devs 社区生态的应用及 AI 工具。更多介绍参考 AgentCraft 文档

img

部署步骤

  1. 登录阿里云云应用开发平台 CAP,访问《智能体世界》应用:阿里云登录 - 欢迎登录阿里云,安全稳定的云计算服务平台
  2. 根据指引一键部署
  3. 打开服务

配置

AgentCraft 部署后需要进行简单配置,包含数据库(必填),向量模型(可跳过)。

配置步骤

1.快速体验可以选择共享数据库,社区提供了一个独立数据库用于简单测试(测试完可以随时删除个人数据),强烈建议您使用自己的专属数据库,这样所有的数据都会由您专属管理,点击“专属数据库”可以查看指引。

img

2.部署向量模型,AgentCraft 采用的是 large-bge 向量模型,您可以在这里一键部署,如果不需要使用知识库检索能力,可以直接跳过。部署过程可以点击查看。

img

部署过程可以点击查看

注: 使用子账号部署该模型服务的时候,可能会因为权限问题导致失败,此时可以先跳过该步骤,参考《更多补充说明》-向量模型单独部署配置

3.部署完成后,点击完成。

使用体验

注册登录

  1. 注册一个虚拟账号(可以随时删除配置的资源),然后登录。

     

  2. 两步配置 DeepSeek 满血的模型服务以及创建体验智能体。

     

模型应用体验

对话及逻辑推理能力测试

对话设置

对话测试

知识库能力测试

新建一个数据集(给模型的上下文参考)


 

新建及配置知识库智能体


 


保存后点击右侧“预览”对话测试。
 


 


可以看到 DS 给了非常详细的信息。

定制 UI

相信很多同学或企业都希望能够把智能的平台按照自己的方式进行定制,比如我自己定制了自己的“小王同学”后台以及对应的 DS ChatBot。
 


 


本项目提供完全的视觉定制能力,基于源码的定制以及通过配置进行简单定制,本次主要介绍简单定制。
 

清理项目 - 划重点!

如果您使用的是 共享数据库,您一定要及时清理数据,需要删除相关的数据集,LLM 代理,以及智能体,因为这些数据会存在于共享数据库并不安全。

删除数据集

删除 LLM 代理

删除智能体

更多补充说明

如何获取数据库

如果您需要长期使用该服务,确保所有数据专属化,您需要关注这个部分。

AgentCraft 使用的是 PostgreSql 数据库,您可以考虑在您的虚拟主机上,通过镜像方式拉取,这里是镜像地址:registry.cn-hangzhou.aliyuncs.com/agentcraft/agentcraft-pg:v1 ,虚拟机上装好之后还需要配置网络等等

如果觉得麻烦,不妨考虑直接购买阿里云的数据库服务,相关教程如下:

创建数据库实例(postgresql)

阿里云 postgresql 实例购买链接:云数据库 RDS_关系型数据库_数据库上云_数据库-阿里云
 


新用户只需 227 一年,拥有 100G 的存储。

创建管理账号


注意选择 高权限 账号(账号及密码后续会持续使用,请妥善管理。)

创建数据库

实例创建好之后进行数据库创建。
 


 


注意这里授权账号选择上述创建的账号。

数据库连接测试


 

最终配置

数据库连接地址:
 


 


数据库名:
 


数据库账号:
步骤 2 中所设置的高权限账号。

数据库密码:
步骤 2 中所设置的高权限账号密码。

如何配置更多模型

如果您需要体验更多模型可以按照如下步骤:
 


 


 


接下来百炼 deepseek-v3, qwen-max-latest 以及 deepseek 官方的 v3,r1 模型按照同样步骤配置(注意需要到 deepseek 的开放平台获取 apikey)。
 


根据以上步骤完成配置,即可开始准备测试。

向量模型单独部署配置

前置步骤中如果您的向量模型服务部署失败,则可以重新部署配置。

访问向量模型创建地址:阿里云登录 - 欢迎登录阿里云,安全稳定的云计算服务平台

注意选取对应的 region,根据指示配置权限。

创建好之后:
 


配置 -> 触发器
获取触发器的公网地址(http/https)皆可以。
 


然后进入刚部署的服务,选择 backend,环境变量,添加 EMBEDDING_URL=<复制的地址>/embedding

Q&A

Q:访问服务有问题,数据库连不上。
A:
数据库如果使用内网链接,需要保证 vpn 一致,同时确认您的配置使用高权限账号,并且高权限账号授权给您的数据库。
如果已配置 VPC 数据库还是连接不上,建议可以先开放数据库公网连接进行测试。等调通后再去解决网络连接问题。

Q:如何调整模型上下文?
A:
在构建智能体的时候,有 max_token 选项,可以根据需要调整。

Q: 可以长期使用共享数据库么?
A:
建议不要,共享数据库虽然不会存储敏感信息(您自身的数据集包含敏感信息切勿上传),但是因为公网暴露,不安全,所以建议不要作为长期服务使用。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值