不得不说,将DeepSeek-R1接入WPS真的惊呆我了!这意味着什么?简单来说,文档编辑从“手动挡”进化成了“自动挡”!不管是生成内容、优化表达,甚至是逻辑推理分析,AI都能直接帮你搞定,爽到飞起!
今天就来给大家聊聊,如何在WPS里接入 DeepSeek-R1,一步步带你从零配置到实战,让AI真正成为你的文档处理助手。
为什么要在WPS里接入DeepSeek-R1?
讲道理,我以前用WPS,大多数时候就是敲敲字、插插图、改改排版,写完了还得自己检查语法、优化表达,甚至有时候绞尽脑汁想一段好文案,简直像掏空灵魂。
但现在,DeepSeek-R1 直接进驻 WPS,相当于在文档里藏了一个AI小助手,帮你:
-
快速生成内容:随便给个大纲,AI就能帮你扩展成一段流畅的文本。
-
优化表达:写完的内容,总觉得有点别扭?AI可以帮你润色,变得更自然、更流畅。
-
逻辑推理:写方案、分析数据、写报告?让AI来帮你理清逻辑,提升说服力。
这么一看,这不就是文档界的“外挂”吗?不装等啥呢?接下来就带你 一步步配置,让AI真正成为你的写作搭子。
第一步:获取DeepSeek-R1的API Key
要让DeepSeek-R1在WPS里跑起来,首先得有个 API Key,就像是进入AI世界的“通行证”。获取方式有两种:
方案一:DeepSeek官方API Key
可以去官网申请:https://www.deepseek.com
但! 目前官方的API Key申请已经暂停开放,所以你可能白跑一趟……
方案二:腾讯云提供的DeepSeek-R1 API Key
这个方案更靠谱,可以去这里申请:https://curl.qcloud.com/T3M5yBHp相对稳定,推荐使用!
⚠️ 重要提醒:不管用哪个API Key,都得保证你的账户有余额,否则AI是不会搭理你的!
第二步:配置WPS开发工具
既然AI要接入WPS,那就得打开WPS的开发模式,整个流程其实很简单,跟着来就行。
1. 启用开发工具
- 打开 WPS,随便新建一个文档。
-
点击 文件 → 选项 → 自定义功能区。
-
在右侧的功能区列表中,找到 “工具”,勾选它。
- 点击 “确定”,保存设置。
2. 配置信任中心
-
在 WPS 中,点击 文件 → 选项 → 信任中心。
-
选择 “信任中心设置” → “宏安全性”。
-
将安全性设置为 “低”,这样才能运行 VBA 宏。
3. 添加宏模块
- 在 WPS 顶部菜单栏,点击 工具 → 开发工具 → 切换到VB环境,然后 重启WPS。
- 重启后,点击 VB编辑器。
- 在弹出的 VB编辑器窗口,点击 插入 → 模块。
- 复制以下代码到编辑区里,并把
your_api_key_here
换成你申请到的API Key:
保存代码,关闭 VB 编辑器。
以下是Deepseek-R1代码(官方apikey)完整代码示例,记得替换为你的API Key:
Function CallDeepSeekAPI(api_key As String, inputText As String) As String
Dim API As String
Dim SendTxt As String
Dim Http As Object
Dim status_code As Integer
Dim response As String
API = "https://api.deepseek.com/chat/completions"
SendTxt = "{""model"": ""deepseek-reasoner"", ""messages"": [{""role"":""system"", ""content"":""You are a Word assistant""}, {""role"":""user"", ""content"":""" & inputText & """}], ""stream"": false}"
Set Http = CreateObject("MSXML2.XMLHTTP")
With Http
.Open "POST", API, False
.setRequestHeader "Content-Type", "application/json"
.setRequestHeader "Authorization", "Bearer " & api_key
.send SendTxt
status_code = .Status
response = .responseText
End With
' 弹出窗口显示 API 响应(调试用)
' MsgBox "API Response: " & response, vbInformation, "Debug Info"
If status_code = 200 Then
CallDeepSeekAPI = response
Else
CallDeepSeekAPI = "Error: " & status_code & " - " & response
End If
Set Http = Nothing
End Function
Sub DeepSeekR1()
Dim api_key As String
Dim inputText As String
Dim response As String
Dim regex As Object
Dim reasoningRegex As Object
Dim contentRegex As Object
Dim matches As Object
Dim reasoningMatches As Object
Dim originalSelection As Object
Dim reasoningContent As String
Dim finalContent As String
api_key = "替换为你的api key"
If api_key = "" Then
MsgBox "Please enter the API key."
Exit Sub
ElseIf Selection.Type <> wdSelectionNormal Then
MsgBox "Please select text."
Exit Sub
End If
' 保存原始选中的文本
Set originalSelection = Selection.Range.Duplicate
inputText = Replace(Replace(Replace(Replace(Replace(Selection.text, "\", "\\"), vbCrLf, ""), vbCr, ""), vbLf, ""), Chr(34), "\""")
response = CallDeepSeekAPI(api_key, inputText)
If Left(response, 5) <> "Error" Then
' 创建正则表达式对象来分别匹配推理内容和最终回答
Set reasoningRegex = CreateObject("VBScript.RegExp")
With reasoningRegex
.Global = True
.MultiLine = True
.IgnoreCase = False
.Pattern = """reasoning_content"":""(.*?)"""
End With
Set contentRegex = CreateObject("VBScript.RegExp")
With contentRegex
.Global = True
.MultiLine = True
.IgnoreCase = False
.Pattern = """content"":""(.*?)"""
End With
' 提取推理内容
Set reasoningMatches = reasoningRegex.Execute(response)
If reasoningMatches.Count > 0 Then
reasoningContent = reasoningMatches(0).SubMatches(0)
reasoningContent = Replace(reasoningContent, "\n\n", vbNewLine)
reasoningContent = Replace(reasoningContent, "\n", vbNewLine)
reasoningContent = Replace(Replace(reasoningContent, """", Chr(34)), """", Chr(34))
End If
' 提取最终回答
Set matches = contentRegex.Execute(response)
If matches.Count > 0 Then
finalContent = matches(0).SubMatches(0)
finalContent = Replace(finalContent, "\n\n", vbNewLine)
finalContent = Replace(finalContent, "\n", vbNewLine)
finalContent = Replace(Replace(finalContent, """", Chr(34)), """", Chr(34))
' 取消选中原始文本
Selection.Collapse Direction:=wdCollapseEnd
' 插入推理过程(如果存在)
If Len(reasoningContent) > 0 Then
Selection.TypeParagraph
Selection.TypeText "推理过程:"
Selection.TypeParagraph
Selection.TypeText reasoningContent
Selection.TypeParagraph
Selection.TypeText "最终回答:"
Selection.TypeParagraph
End If
' 插入最终回答
Selection.TypeText finalContent
' 将光标移回原来选中文本的末尾
originalSelection.Select
Else
MsgBox "Failed to parse API response.", vbExclamation
End If
Else
MsgBox response, vbCritical
End If
End Sub
第三步:自定义功能区(加个AI按钮!)
-
回到 WPS 主界面,点击 文件 → 选项 → 自定义功能区。
-
在右侧列表里,新建一个组,命名为 DeepSeek。
- 在左侧命令列表里,找到 宏,然后选中刚刚创建的 GetAIResponse。
- 点击 添加,然后右键重命名为 生成。
- 点击 确定,保存设置。
现在,我们在WPS里加了一个专属按钮,点一下就能调用AI,牛不牛?
第四步:使用DeepSeek-R1生成内容(实战!)
-
打开WPS文档,随便输入一句话,比如:请输入一个关于AI未来的简短分析:
-
选中这句话。
-
点击刚刚创建的 生成 按钮。
- 等待几秒,AI会自动生成一段完整的分析,并直接插入到文档中!
这体验,就像请了个贴身秘书,随时帮你写文案、润色表达,甚至还能帮你分析问题。
第五步:创建WPS模板(以后直接用!)
有了这个功能,我们可以保存成模板,省得每次都要重新配置:
-
点击“文件” → “另存为”。
-
在文件类型里选择 “Microsoft Word 带宏的模板文件(*.dotm)”。
- 保存到WPS的模板文件夹(通常是这个路径):C:\Users\用户名\AppData\Roaming\kingsoft\wps\startup
下次需要用的时候,直接打开这个模板文件就能用AI写文档,简直不要太方便!
这波操作下来,我真的感觉自己是个“AI增强人”了——文档写作变得超高效,润色优化信手拈来,甚至还能让AI帮忙分析问题,真香!
以前写报告、整理方案,最痛苦的就是改来改去,现在有了 DeepSeek-R1,直接在 WPS 里一句话搞定,省下来的时间都够我刷两集番了。
你们觉得这个功能 炸不炸?赶紧试试,把 AI 请进你的 WPS,享受这飞一般的文档编辑体验!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓