在当今人工智能飞速发展的时代,AI Agent的开发成为了众多企业和开发者关注的焦点。而在AI Agent的开发过程中,RAG(Retrieval-Augmented Generation)和微调是两种常见的技术手段,它们看似都能提升模型对特定任务的处理能力,但实际上却有着本质的区别。这两者完全是两个量级、两个维度的东西,正确地选择对于项目的成功至关重要。
一、RAG:借助外部知识增强能力
我们可以把大模型比作一个刚毕业的大学生,这个大学生有一定的基础知识,能够理解人类的语言,就像大模型能够处理各种各样的输入内容一样。RAG的方式就如同给这个大学生提供一本特定行业的书籍。以客服场景为例,这本书就是客服话术手册。当大模型(刚毕业的大学生)在回复客户咨询之前,它会在这个话术手册中查找相关的信息,然后将找到的内容转化为自然流畅的话语反馈给客户。
这种方式的优势十分明显。首先,它不需要对大模型本身进行大规模的改动。大模型仍然保持着其原有的通用性和灵活性,只是在需要的时候能够利用外部的知识资源。其次,RAG的实现相对较为简单,不需要太多复杂的技术基础设施和大量的计算资源。从成本角度来看,RAG的项目成本通常在几十万左右。对于企业来说,这是一笔相对容易承受的开支,并且可以有效地优化工作流。例如,一个普通的电商企业,不需要重新训练一个专门针对电商客服的大模型,只需要构建一个RAG系统,将电商产品知识手册和常见问题解答等相关资料整合进来,大模型就能够快速地为客户提供准确的答复。
再者,RAG的更新和维护也比较容易。如果企业的话术或者知识内容发生了变化,只需要更新对应的手册或者知识库,大模型就能立即利用新的信息。这对于行业变动较快的领域,如一些新兴的互联网行业或者时尚行业,具有很大的优势。这些行业的知识体系经常更新,RAG可以及时跟上变化的节奏。
二、微调:深度定制专属模型
然而,微调就像是对这个刚毕业的大学生进行封闭式训练一年,将所有相关的业务话术从头教起。在微调的过程中,企业会提供自己精心准备的训练素材,通过这些素材对大模型进行有针对性的调整,目的是让大模型真正成为所在行业的专家。
微调后的模型能够更加精准地处理特定行业的任务。以法律或者医疗行业为例,这两个行业变动极小,知识体系相对稳定。微调后的法律或医疗大模型能够深度掌握行业知识,给出非常专业、准确的回答。因为微调不仅仅是在查询外部知识,而是真正地改变了模型的参数,让模型在内部对特定领域的知识进行深度学习和融合。
但是,微调的难度比RAG要高出几个数量级。从技术层面上讲,微调需要专业的算法工程师和大量高质量、结构化的训练数据。这些数据需要经过精心的标注和筛选,以确保模型能够正确学习。而且,微调对计算资源的要求也非常高,需要有强大的GPU集群等硬件设施来支持大规模的训练过程。这也就导致了微调的项目成本非常高,通常高达几百万。
三、如何选择:依据行业特性和需求
在了解了RAG和微调的特点和区别之后,企业和开发者们应该如何选择呢?
如果你的企业所在行业变动极少,如法律和医疗行业,微调可能是一个更好的选择。这些行业的知识积累相对稳定,一旦微调成功,模型能够在很长时间内保持高水平的专业服务能力。以医院为例,利用微调后的医疗大模型,可以为患者提供更加准确、个性化的医疗咨询服务,医生也可以将其作为辅助诊断工具,提高诊断效率和准确性。
然而,对于绝大多数行业来说,尤其是那些变化较快、知识更新频繁的行业,RAG是更为合适的方案。例如,互联网行业的营销、产品推广等场景,市场需求和营销话术不断变化,采用RAG可以快速灵活地应对这些变化。企业可以根据市场反馈及时调整话术手册或者知识库,而不需要对模型进行复杂的重新训练。
另外,从项目预算和资源的角度考虑,如果预算有限且缺乏大规模数据标注和强大计算资源,RAG的几十万成本方案更具可行性。而如果企业有充足的资金、技术实力,并且对模型的专业度有极高的要求,那么可以考虑微调。
四、RAG的优化与拓展
对于采用RAG的企业来说,也有许多优化和拓展的策略。一方面,可以不断丰富和优化查询的知识库。除了基本的话术手册,还可以加入行业动态信息、用户反馈内容等,使大模型能够获取更全面的信息进行回答。另一方面,可以建立知识库的自动更新机制,通过机器学习算法监测知识的变化,自动调整和更新知识库中的内容。
同时,RAG还可以与其他技术相结合。比如,可以将RAG与自然语言处理中的意图识别技术相结合,先准确判断用户的问题意图,然后更有针对性地在知识库中查找信息,提高回答的准确性和效率。
五、结语
总之,在AI Agent的开发中,RAG和微调各有其独特的优势和适用场景。企业需要根据自身的行业特性、预算、技术资源等因素综合考虑选择合适的技术方案。无论是RAG的成本效益优势,还是微调的专业精准性,都为企业在人工智能应用领域提供了更多的发展可能。几十万的RAG项目能够为企业的工作流优化带来显著的提升,而几百万的微调项目则能让企业在特定领域建立起高门槛的专业服务体系。希望通过本文的分析,能够让更多的企业在AI Agent开发的道路上做出明智的决策。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓