这是我参加”朝闻道“知识分享大赛的第五篇文章
《几何原本》是古希腊文化、古希腊数学的结晶。古希腊数学空泛的脱离了实际问题,数学处于宗教、哲学的精神子系统的地位,它必然采用精神系统所要求的概念、方法和表现形式来构成数学。这是古希腊数学区别于其他民族数学的根本原因
来源:欧几里得《几何原本》
- 埃及人:尼罗河泛滥--土地测量--几何学
- 巴比伦人:掌握了以几何知识为背景的航海与天文学知识。
- 希腊人:跟埃及人通商,学到了测量与绘画等几何初步知识。在这些几何初步知识的基础上,逐渐将它扩充、完善成为一门完整的几何学。“几何学”这个词,来自于希腊文,原意是“测量土地技术”。
内容:欧几里得《几何原本》
第1篇到第四篇:直边形到圆的基本性质。
- 第1篇的内容是关于全等形的一些熟知的定理,平行线、毕达哥拉斯定理、初等作图法、等价形(有等面积的图形)和平行四边形。
- 第2篇突出内容是对于几何代数法的贡献。由于希腊人不承认存在无理数,所以不能从数量上处理所有长度、面积、角度和体积。于是希腊人用线段来代替数。
- 第3篇包含37个命题。包括圆的一些几何定义,接着讨论弦、切线、割线、圆心角及圆周角等山
- 第4篇在16个命题里论述圆的内护 三角 五边形和正六边形。