【LangChain系列】实战案例3:深入LangChain源码,你不知道的WebResearchRetriever与RAG联合之力

上篇文章我们学习了如何利用 LangChain 通过 URL 获取网页内容。本文我们继续学习利用 LangChain 进行网络数据抓取:我们将利用 LangChain 抓取网络数据来回答我们指定的问题(也就是类似 网络 + RAG)。

本文参考教程:python.langchain.com/docs/use_ca…

0. 环境准备

要想成功运行本文所示的代码,需要做一下准备。

0.1 获取Google API key

首先,需要获取一个 Google API key。

(1)打开链接,登录你的Google账号(没有Google账号的请自行注册):

console.cloud.google.com/apis/api/cu…

在这里插入图片描述

(2)创建一个Project

在这里插入图片描述

(3)在你创建的 Project 页面(创建完后会自动跳转),点 API key,创建API key即可

image.png

(4)配置API key到你的代码中:将这个API key放到你的程序 .env 文件中作为环境变量加载。

python
复制代码
GOOGLE_API_KEY = "YOUR GOOGLE API KEY"

0.2 获取 Google CSE ID

(1)登录链接,创建一个新的 Search Engine

programmablesearchengine.google.com/

image.png

(2)创建完后,Search engine ID 即为所需的 CSE ID。

image.png

(3)配置 CSE ID 到你的代码中:将这个 CSE ID 放到你的程序 .env 文件中作为环境变量加载。

python
复制代码
GOOGLE_CSE_ID = "xxxxxxx"

0.3 安装依赖Python包

我的安装以下两个基本就够了,因为之前安装过 langchain、openai之类的。

python
复制代码
pip install google-api-core==2.11.1
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple google-api-python-client==2.95.0

完整的安装依赖参考

python
复制代码
streamlit==1.25.0
langchain==0.0.244
chromadb==0.4.3
openai==0.27.8
html2text==2020.1.16
google-api-core==2.11.1
google-api-python-client==2.95.0
google-auth==2.22.0
google-auth-httplib2==0.1.0
googleapis-common-protos==1.59.1
tiktoken==0.4.0
faiss-cpu==1.7.4

1. 完整代码及解释

1.1 完整代码

python
复制代码
from langchain.retrievers.web_research import WebResearchRetriever
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

# Vectorstore
vectorstore = Chroma(
    embedding_function=OpenAIEmbeddings(), persist_directory="./chroma_db_oai"
)

# LLM
llm = ChatOpenAI(temperature=0)

# Search
search = GoogleSearchAPIWrapper()

# Initialize
web_research_retriever = WebResearchRetriever.from_llm(
    vectorstore=vectorstore, llm=llm, search=search
)

# Run
import logging

logging.basicConfig()
logging.getLogger("langchain.retrievers.web_research").setLevel(logging.INFO)
from langchain.chains import RetrievalQAWithSourcesChain

user_input = "How do LLM Powered Autonomous Agents work?"
qa_chain = RetrievalQAWithSourcesChain.from_chain_type(
    llm, retriever=web_research_retriever
)
result = qa_chain({"question": user_input})
print(result)

1.2 代码研读

1.2.1 WebResearchRetriever

首先是代码中最重要的一个封装类:WebResearchRetriever。

它的使用方式如下:

python
复制代码
# Initialize
web_research_retriever = WebResearchRetriever.from_llm(
    vectorstore=vectorstore, llm=llm, search=search
)

接收三个主要参数:

  • 向量数据库:用来存储网页数据
  • llm
  • 检索引擎,这里的检索引擎 必须是 Google Search API
python
复制代码
class WebResearchRetriever(BaseRetriever):
    """`Google Search API` retriever."""

	search: GoogleSearchAPIWrapper = Field(..., description="Google Search API Wrapper")

再看下其构造过程:from_llm 函数

python
复制代码
def from_llm(
        cls,
        vectorstore: VectorStore,
        llm: BaseLLM,
        search: GoogleSearchAPIWrapper,
        prompt: Optional[BasePromptTemplate] = None,
        num_search_results: int = 1,
        text_splitter: RecursiveCharacterTextSplitter = RecursiveCharacterTextSplitter(
            chunk_size=1500, chunk_overlap=150
        ),
    ) -> "WebResearchRetriever":
        """Initialize from llm using default template.

        Args:
            vectorstore: Vector store for storing web pages
            llm: llm for search question generation
            search: GoogleSearchAPIWrapper
            prompt: prompt to generating search questions
            num_search_results: Number of pages per Google search
            text_splitter: Text splitter for splitting web pages into chunks

        Returns:
            WebResearchRetriever
        """

        if not prompt:
            QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector(
                default_prompt=DEFAULT_SEARCH_PROMPT,
                conditionals=[
                    (lambda llm: isinstance(llm, LlamaCpp), DEFAULT_LLAMA_SEARCH_PROMPT)
                ],
            )
            prompt = QUESTION_PROMPT_SELECTOR.get_prompt(llm)

        # Use chat model prompt
        llm_chain = LLMChain(
            llm=llm,
            prompt=prompt,
            output_parser=QuestionListOutputParser(),
        )

        return cls(
            vectorstore=vectorstore,
            llm_chain=llm_chain,
            search=search,
            num_search_results=num_search_results,
            text_splitter=text_splitter,
        )

这个函数用来初始化 WebResearchRetriever,除了上面说的三个主要参数外,其额外提供了默认的Prompt模板text_splitterQuestionListOutputParserRetriever过程所需的工具和内容。

默认的Prompt模板内容如下:

python
复制代码
DEFAULT_SEARCH_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an assistant tasked with improving Google search \
results. Generate THREE Google search queries that are similar to \
this question. The output should be a numbered list of questions and each \
should have a question mark at the end: {question}""",
)

从这个Prompt大致可以看出WebResearchRetriever的工作过程:

(1)根据用户的问题,利用大模型将该问题转化为3个与用户问题相近的Google搜索语句

(2)利用 Google CSE 搜索这几个问题,会得到一系列相关 URL

(3)利用上篇文章我们爬取网页内容的方法,将每个URL中的文本抓取出来

(4)对抓取出来的文本进行分块,向量存储(WebResearchRetriever的工作到这里就结束了)

(5)然后就是其它模块使用RAG的流程:用户提问 —> 查询向量数据库 —> 大模型回答问题

整体流程示意图如下:

在这里插入图片描述

(1)-(4)步骤的源码如下,可以对照着看一下:

python
复制代码
def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
    ) -> List[Document]:
        """Search Google for documents related to the query input.

        Args:
            query: user query

        Returns:
            Relevant documents from all various urls.
        """

        # Get search questions
        logger.info("Generating questions for Google Search ...")
        result = self.llm_chain({"question": query})
        logger.info(f"Questions for Google Search (raw): {result}")
        questions = result["text"]
        logger.info(f"Questions for Google Search: {questions}")

        # Get urls
        logger.info("Searching for relevant urls...")
        urls_to_look = []
        for query in questions:
            # Google search
            search_results = self.search_tool(query, self.num_search_results)
            logger.info("Searching for relevant urls...")
            logger.info(f"Search results: {search_results}")
            for res in search_results:
                if res.get("link", None):
                    urls_to_look.append(res["link"])

        # Relevant urls
        urls = set(urls_to_look)

        # Check for any new urls that we have not processed
        new_urls = list(urls.difference(self.url_database))

        logger.info(f"New URLs to load: {new_urls}")
        # Load, split, and add new urls to vectorstore
        if new_urls:
            loader = AsyncHtmlLoader(new_urls, ignore_load_errors=True)
            html2text = Html2TextTransformer()
            logger.info("Indexing new urls...")
            docs = loader.load()
            docs = list(html2text.transform_documents(docs))
            docs = self.text_splitter.split_documents(docs)
            self.vectorstore.add_documents(docs)
            self.url_database.extend(new_urls)

        # Search for relevant splits
        # TODO: make this async
        logger.info("Grabbing most relevant splits from urls...")
        docs = []
        for query in questions:
            docs.extend(self.vectorstore.similarity_search(query))

        # Get unique docs
        unique_documents_dict = {
            (doc.page_content, tuple(sorted(doc.metadata.items()))): doc for doc in docs
        }
        unique_documents = list(unique_documents_dict.values())
        return unique_documents

1.2.2 GoogleSearchAPIWrapper

这是 Google CSE 检索API的封装类。

python
复制代码
class GoogleSearchAPIWrapper(BaseModel):
    """Wrapper for Google Search API."""

1.2.3 RetrievalQAWithSourcesChain

这是 LangChain 内封装的问答QA链,提问-给出答案,并带有答案来源Sources.

对检索到的文档进行问答,并引用其来源。当您希望答案响应在文本响应中具有来源时,请使用此选项。

使用方法:

python
复制代码
qa_chain = RetrievalQAWithSourcesChain.from_chain_type(
    llm, retriever=web_research_retriever
)

接收两个参数:

  • llm:大模型
  • retriver:检索器

其源码定义如下:

python
复制代码
class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain):
    """Question-answering with sources over an index."""

    retriever: BaseRetriever = Field(exclude=True)
    """Index to connect to."""
    reduce_k_below_max_tokens: bool = False
    """Reduce the number of results to return from store based on tokens limit"""
    max_tokens_limit: int = 3375
    """Restrict the docs to return from store based on tokens,
    enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true"""

2. 总结

本文我们主要学习了利用 LangChain进行网络文档 + RAG 的使用,重点看了 LangChain中WebResearchRetriever的封装和实现原理。里面虽然使用的Google搜索,在国内有诸多限制,但是里面的实现思路是值得借鉴的:

(1)找到与用户问题相关的网页

  • 用户提问转换为相似的搜索语句
  • 通过检索API找到相关的网页URL

(2)文本获取与存储

  • 爬取URL文本内容
  • 分割文本并向量存储

(3)使用以上相关内容进行RAG增强检索,回答用户问题

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 15
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值