1分钟学会DeepSeek本地部署,小白也能搞定!

DeepSeek 是国内顶尖 AI 团队「深度求索」开发的多模态大模型,具备数学推理、代码生成等深度能力,堪称"AI界的六边形战士"。

DeepSeek 身上的标签有很多,其中最具代表性的标签有以下两个:

  1. 低成本(不挑硬件、开源)
  2. 高性能(推理能力极强、回答准确)

一、为什么要部署本地DeepSeek?

相信大家在使用 DeepSeek 时都会遇到这样的问题:

这是由于 DeepSeek 大火之后访问量比较大,再加上漂亮国大规模、持续的恶意攻击,导致 DeepSeek 的服务器很不稳定。所以,这个此时在本地部署一个 DeepSeek 大模型就非常有必要了。

再者说,有些数据比较敏感,咱也不想随便传到网上去,毕竟安全第一嘛。这时候,本地大模型的优势就凸显出来了。它就在你自己的电脑上运行,完全不用担心网络问题,而且数据都在本地,隐私更有保障。而且,本地大模型可以根据你的需求进行定制,想怎么用就怎么用,灵活性超强!

二、怎么部署本地大模型?

在本地部署 DeepSeek 只需要以下三步:

  1. 安装 Ollama。
  2. 部署 DeepSeek。
  3. 使用 DeepSeek:这里我们使用 ChatBox 客户端操作 DeepSeek(此步骤非必须)。

Ollama、DeepSeek 和 ChatBox 之间的关系如下:

  • Ollama 是“大管家”,负责把 DeepSeek 安装到你的电脑上。
  • DeepSeek 是“超级大脑”,住在 Ollama 搭建好的环境里,帮你做各种事情。
  • ChatBox 是“聊天工具”,让你更方便地和 DeepSeek 交流。

安装Ollama

Ollama 是一个开源的大型语言模型服务工具。它的主要作用是帮助用户快速在本地运行大模型,简化了在 Docker 容器内部署和管理大语言模型(LLM)的过程。

PS:Ollama 就是大模型届的“Docker”。

Ollama 优点如下:

  • 易于使用:即使是没有经验的用户也能轻松上手,无需开发即可直接与模型进行交互。
  • 轻量级:代码简洁,运行时占用资源少,能够在本地高效运行,不需要大量的计算资源。
  • 可扩展:支持多种模型架构,并易于添加新模型或更新现有模型,还支持热加载模型文件,无需重新启动即可切换不同的模型,具有较高的灵活性。
  • 预构建模型库:包含一系列预先训练好的大型语言模型,可用于各种任务,如文本生成、翻译、问答等,方便在本地运行大型语言模型。

Ollama 官网:Ollama

下载并安装Ollama

下载地址:Ollama

用户根据自己的操作系统选择对应的安装包,然后安装 Ollama 软件即可。

安装完成之后,你的电脑上就会有这样一个 Ollama 应用:

点击应用就会运行 Ollama,此时在你电脑状态栏就可以看到 Ollama 的小图标,测试 Ollama 有没有安装成功,使用命令窗口输入“ollama -v”指令,能够正常响应并显示 Ollama 版本号就说明安装成功了,如下图所示:

部署DeepSeek

Ollama 支持大模型列表:library

选择 DeepSeek 大模型版本,如下图所示:

DeepSeek版本介绍
模型参数规模典型用途CPU 建议GPU 建议内存建议 (RAM)磁盘空间建议适用场景
1.5b (15亿)小型推理、轻量级任务4核以上 (Intel i5 / AMD Ryzen 5)可选,入门级 GPU (如 NVIDIA GTX 1650, 4GB 显存)8GB10GB 以上 SSD小型 NLP 任务、文本生成、简单分类
7b (70亿)中等推理、通用任务6核以上 (Intel i7 / AMD Ryzen 7)中端 GPU (如 NVIDIA RTX 3060, 12GB 显存)16GB20GB 以上 SSD中等规模 NLP、对话系统、文本分析
14b (140亿)中大型推理、复杂任务8核以上 (Intel i9 / AMD Ryzen 9)高端 GPU (如 NVIDIA RTX 3090, 24GB 显存)32GB50GB 以上 SSD复杂 NLP、多轮对话、知识问答
32b (320亿)大型推理、高性能任务12核以上 (Intel Xeon / AMD Threadripper)高性能 GPU (如 NVIDIA A100, 40GB 显存)64GB100GB 以上 SSD大规模 NLP、多模态任务、研究用途
70b (700亿)超大规模推理、研究任务16核以上 (服务器级 CPU)多 GPU 并行 (如 2x NVIDIA A100, 80GB 显存)128GB200GB 以上 SSD超大规模模型、研究、企业级应用
671b (6710亿)超大规模训练、企业级任务服务器级 CPU (如 AMD EPYC / Intel Xeon)多 GPU 集群 (如 8x NVIDIA A100, 320GB 显存)256GB 或更高1TB 以上 NVMe SSD超大规模训练、企业级 AI 平台

例如,安装并运行 DeepSeek:ollama run deepseek-r1:1.5b

使用DeepSeek

这里我们使用 ChatBox 调用 DeepSeek 进行交互,ChatBox 就是一个前端工具,用于方便的对接各种大模型(其中包括 DeepSeek),并且它支持跨平台,更直观易用。

ChatBox 官网地址:Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

点击下载按钮获取 ChatBox 安装包:

安装完 Chatbox 之后就是配置 DeepSeek 到 Chatbox 了,如下界面所示:

使用 DeepSeek,如下图所示:

三、扩展知识:本地DeepSeek集成Idea

安装CodeGPT插件

配置Ollama

Ollama API 默认调用端口号:11434

检查相应的配置,如下所示:

使用Ollama

四、优缺点分析

本地大模型的优缺点分析说完部署,我们来分析一下本地大模型的优缺点,好让大家心里有个数。

优点

  • 隐私性高:数据都在本地,不用担心泄露问题,对于一些敏感数据处理来说,这是最大的优势。
  • 稳定性强:不受网络影响,只要电脑不坏,模型就能稳定运行,不用担心中途卡顿或者断线。
  • 可定制性强:可以根据自己的需求进行调整和优化,想让它做什么功能就做什么功能,灵活性很高。

缺点

  • 硬件要求高:大模型对电脑的性能要求不低,如果电脑配置不够,可能会运行很卡,甚至跑不起来。
  • 部署复杂:对于小白来说,一开始可能会觉得有点复杂,需要安装各种东西,还得配置参数,不过只要按照教程来,其实也没那么难。
  • 维护成本高:如果模型出了问题,可能需要自己去排查和解决,不像在线工具,有问题直接找客服就行。

五、最后

小伙伴们,看完这些,是不是觉得本地大模型其实也没那么可怕呢?其实只要按照步骤来,小白也能轻松搞定。动手做起来吧,说不定你就能发现更多好玩的功能,让这个大模型成为你工作和学习的得力助手呢!要是你在部署过程中遇到什么问题,别忘了留言问我哦,我们一起解决!快去试试吧,开启你的本地大模型之旅!

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值