作业包括代码网上有很多,我主要谈谈我的理解,完成一个神经网络需要三步
1.前向传播
2.后向传播
3.梯度下降
这是最主要的三个函数,其次就是随机初始化和花费,随机初始化的作用很重要,花费函数其次
在这其中每一个参数的维度要搞清楚,以上就是我做完这次作业觉得需要注意的点,附上我的代码,也是借鉴了别人的
import numpy as np
import matplotlib.pyplot as plt
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
X,Y = load_planar_dataset()
def size_xy(X,Y):
n_x = X.shape[0]
n_y = Y.shape[0]
n_h = 4
return n_x,n_y,n_h
def chushihua(n_x,n_y,n_h):
W1 = np.random.randn(n_h,n_x)*0.01
W2 = np.random.randn(n_y,n_h)*0.01
b1 = np.zeros(shape=(n_h,1))
b2 = np.zeros(shape=(n_y,1))
parameters = {"W1":W1,
"b1" : b1,
"W2" : W2,
"b2" : b2
}
return parameters
def qianxiang(X,parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(W1,X)+b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2,A1)+b2
A2 = sigmoid(Z2)
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return cache
def cost_compute(A2,Y,parameters):
m = Y.shape[1]
logprobs = np.multiply(Y,np.log(A2))+np.multiply((1-Y),np.log(1-A2))
cost = -np.sum(logprobs)/m
return cost
def houchuan(parameters,cache,X,Y):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2 = A2-Y
dW2 = np.dot(dZ2,A1.T)/m
db2 = np.sum(dZ2,axis=1,keepdims=True)/m
dZ1 = np.multiply(np.dot(W2.T,dZ2),1-np.power(A1,2))
dW1 = np.dot(dZ1,X.T)/m
db1 = np.sum(dZ1,axis=1,keepdims=True)/m
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2 }
return grads
def tiduxiajiang(grads,parameters,learn=1.2):
W1,W2 = parameters["W1"],parameters["W2"]
b1,b2 = parameters["b1"],parameters["b2"]
dW1,dW2 = grads["dW1"],grads["dW2"]
db1,db2 = grads["db1"],grads["db2"]
W1 = W1-learn*dW1
W2 = W2-learn*dW2
b1 = b1-learn*db1
b2 = b2-learn*db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def nn_model(X,Y,n_h,num_diedai,print_cost=True):
np.random.seed(1)
n_x,n_y,n_h = size_xy(X,Y)
parameters = chushihua(n_x,n_y,n_h)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
for i in range(num_diedai):
cache = qianxiang(X,parameters)
A2 = cache["A2"]
grads = houchuan(parameters,cache,X,Y)
cost = cost_compute(A2,Y,parameters)
parameters = tiduxiajiang(grads,parameters,learn=0.5)
if print_cost:
if i%1000 == 0:
print("第"+str(i)+"次,花费"+str(cost))
return parameters
def predict(parameters,X):
cache = qianxiang(X,parameters)
A2 = cache["A2"]
predictions = np.round(A2)
return predictions
parameters = nn_model(X, Y,4, 10000, True)
#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
plt.show()
predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')