2024年最全百度、微博的大数据算法Top10热搜怎么实现?(2),腾讯大数据开发面试题社招

本文介绍了如何通过优先级队列优化任务调度,以及堆在求TopK问题(包括静态和动态数据)和中位数计算中的应用。此外,还探讨了如何在大数据背景下,如搜索引擎日志处理中,利用数据结构高效获取热门搜索关键词。
摘要由CSDN通过智能技术生成

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

针对这些问题,我们就可以用优先级队列来解决。我们按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。

这样,定时器就不需要每隔 1 秒就扫描一遍任务列表了。它拿队首任务的执行时间点,与当前时间点相减,得到一个时间间隔 T。

这个时间间隔 T 就是,从当前时间开始,需要等待多久,才会有第一个任务需要被执行。这样,定时器就可以设定在 T 秒之后,再来执行任务。从当前时间点到(T-1)秒这段时间里,定时器都不需要做任何事情。

当 T 秒时间过去之后,定时器取优先级队列中队首的任务执行。然后再计算新的队首任务的执行时间点与当前时间点的差值,把这个值作为定时器执行下一个任务需要等待的时间。

这样,定时器既不用间隔 1 秒就轮询一次,也不用遍历整个任务列表,性能也就提高了。

堆的应用二:利用堆求 Top K

堆的另外一个非常重要的应用场景,那就是“求 Top K 问题”。

我把这种求 Top K 的问题抽象成两类。一类是针对静态数据集合,也就是说数据集合事先确定,不会再变。另一类是针对动态数据集合,也就是说数据集合事先并不确定,有数据动态地加入到集合中。

针对静态数据,如何在一个包含 n 个数据的数组中,查找前 K 大数据呢?我们可以维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出取数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。

遍历数组需要 O(n) 的时间复杂度,一次堆化操作需要 O(logK) 的时间复杂度,所以最坏情况下,n 个元素都入堆一次,所以时间复杂度就是 O(nlogK)。

针对动态数据求得 Top K 就是实时 Top K。怎么理解呢?我举一个例子。一个数据集合中有两个操作,一个是添加数据,另一个询问当前的前 K 大数据。

如果每次询问前 K 大数据,我们都基于当前的数据重新计算的话,那时间复杂度就是 O(nlogK),n 表示当前的数据的大小。实际上,我们可以一直都维护一个 K 大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前 K 大数据,我们都可以里立刻返回给他。

堆的应用三:利用堆求中位数

前面我们讲了如何求 Top K 的问题,现在我们来讲下,如何求动态数据集合中的中位数。

中位数,顾名思义,就是处在中间位置的那个数。如果数据的个数是奇数,把数据从小到大排列,那第 n/2+1 个数据就是中位数;如果数据的个数是偶数的话,那处于中间位置的数据有两个,第n/2 个和第 n/2+1 个数据,这个时候,我们可以随意取一个作为中位数,比如取两个数中靠前的那个,就是第 n/2 个数据。

对于一组静态数据,中位数是固定的,我们可以先排序,第 n/2 个数据就是中位数。每次询问中位数的时候,我们直接返回这个固定的值就好了。所以,尽管排序的代价比较大,但是边际成本会很小。但是,如果我们面对的是动态数据集合,中位数在不停地变动,如果再用先排序的方法,每次询问中位数的时候,都要先进行排序,那效率就不高了。

借助堆这种数据结构,我们不用排序,就可以非常高效地实现求中位数操作。我们来看看,它是如何做到的?

我们需要维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。

也就是说,如果有 n 个数据,n 是偶数,我们从小到大排序,那前 n/2 个数据存储在大顶堆中,后 n/2 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储 n/2+1 个数据,小顶堆中就存储 n/2 个数据。

我们前面也提到,数据是动态变化的,当新添加一个数据的时候,我们如何调整两个堆,让大顶堆中的堆顶元素继续是中位数呢?

如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;如果新加入的数据大于等于小顶堆的堆顶元素,我们就将这个新数据插入到小顶堆。

这个时候就有可能出现,两个堆中的数据个数不符合前面约定的情况:如果 n 是偶数,两个堆中的数据个数都是n/2;如果 n 是奇数,大顶堆有 n/2+1 个数据,小顶堆有 n/2 个数据。这个时候,我们可以从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。

于是,我们就可以利用两个堆,一个大顶堆、一个小顶堆,实现在动态数据集合中求中位数的操作。插入数据因为需要涉及堆化,所以时间复杂度变成了 O(logn),但是求中位数我们只需要返回大顶堆的堆顶元素就可以了,所以时间复杂度就是 O(1)。

实际上,利用两个堆不仅可以快速求出中位数,还可以快速求其他百分位的数据,原理是类似的。还记得我们在“为什么要学习数据结构与算法”里的这个问题吗?“如何快速求接口的 99% 响应时间?”我们现在就来看下,利用两个堆如何来实现。

在开始这个问题的讲解之前,我先解释一下,什么是“99% 响应时间”。

中位数的概念就是将数据从小到大排列,处于中间位置,就叫中位数,这个数据会大于等于前面 50% 的数据。99 百分位数的概念可以类比中位数,如果将一组数据从小到大排列,这个 99 百分位数就是大于前面 99% 数据的那个数据。

如果你还是不太理解,我再举个例子。假设有 100 个数据,分别是 1,2,3,……,100,那 99 百分位数就是 99,因为小于等于 99 的数占总个数的 99%。

弄懂了这个概念,我们再来看 99% 响应时间。如果有 100 个接口访问请求,每个接口请求的响应时间都不同,比如 55 毫秒、100 毫秒、23 毫秒等,我们把这 100 个接口的响应时间按照从小到大排列,排在第 99 的那个数据就是 99% 响应时间,也叫 99 百分位响应时间。

我们总结一下,如果有 n 个数据,将数据从小到大排列之后,99 百分位数大约就是第 n_99% 个数据,同类,80 百分位数大约就是第 n_80% 个数据。

弄懂了这些,我们再来看如何求 99% 响应时间。

我们维护两个堆,一个大顶堆,一个小顶堆。假设当前总数据的个数是 n,大顶堆中保存 n_99% 个数据,小顶堆中保存 n_1% 个数据。大顶堆堆顶的数据就是我们要找的 99% 响应时间。

每次插入一个数据的时候,我们要判断这个数据跟大顶堆和小顶堆堆顶数据的大小关系,然后决定插入到哪个堆中。如果这个新插入的数据比大顶堆的堆顶数据小,那就插入大顶堆;如果这个新插入的数据比小顶堆的堆顶数据大,那就插入小顶堆。

但是,为了保持大顶堆中的数据占 99%,小顶堆中的数据占 1%,在每次新插入数据之后,我们都要重新计算,这个时候大顶堆和小顶堆中的数据个数,是否还符合 99:1 这个比例。如果不符合,我们就将一个堆中的数据移动到另一个堆,直到满足这个比例。移动的方法类似前面求中位数的方法,这里我就不啰嗦了。

通过这样的方法,每次插入数据,可能会涉及几个数据的堆化操作,所以时间复杂度是 O(logn)。每次求 99% 响应时间的时候,直接返回大顶堆中的堆顶数据即可,时间复杂度是 O(1)。

解答开篇

懂了上面的一些应用场景的处理思路,我想你应该能解决开篇的那个问题了吧。假设现在我们有一个包含 10 亿个搜索关键词的日志文件,如何快速获取到 Top 10 最热门的搜索关键词呢?

处理这个问题,有很多高级的解决方法,比如使用 MapReduce 等。但是,如果我们将处理的场景限定为单机,可以使用的内存为 1GB。那这个问题该如何解决呢?

因为用户搜索的关键词,有很多可能都是重复的,所以我们首先要统计每个搜索关键词出现的频率。我们可以通过散列表、平衡二叉查找树或者其他一些支持快速查找、插入的数据结构,来记录关键词及其出现的次数。

假设我们选用散列表。我们就顺序扫描这 10 亿个搜索关键词。当扫描到某个关键词时,我们去散列表中查询。如果存在,我们就将对应的次数加一;如果不存在,我们就将它插入到散列表,并记录次数为 1。以此类推,等遍历完这 10 亿个搜索关键词之后,散列表中就存储了不重复的搜索关键词以及出现的次数。

然后,我们再根据前面讲的用堆求 Top K 的方法,建立一个大小为 10 的小顶堆,遍历散列表,依次取出每个搜索关键词及对应出现的次数,然后与堆顶的搜索关键词对比。如果出现次数比堆顶搜索关键词的次数多,那就删除堆顶的关键词,将这个出现次数更多的关键词加入到堆中。

以此类推,当遍历完整个散列表中的搜索关键词之后,堆中的搜索关键词就是出现次数最多的 Top 10 搜索关键词了。

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值