2024年最新CDH 之 hive 数据迁移_cdh数据互导,2024年最新大数据开发自学资料

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:Got exception: org.apache.hadoop.security.AccessControlException Permission denied: user=root, access=WRITE, inode=“/user”:hdfs:hadoop:drwxr-xr-x
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:400)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:256)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:194)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1855)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1839)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1798)
at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:61)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:3101)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1123)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:696)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol 2. c a l l B l o c k i n g M e t h o d ( C l i e n t N a m e n o d e P r o t o c o l P r o t o s . j a v a ) a t o r g . a p a c h e . h a d o o p . i p c . P r o t o b u f R p c E n g i n e 2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine 2.callBlockingMethod(ClientNamenodeProtocolProtos.java)atorg.apache.hadoop.ipc.ProtobufRpcEngineServer P r o t o B u f R p c I n v o k e r . c a l l ( P r o t o b u f R p c E n g i n e . j a v a : 523 ) a t o r g . a p a c h e . h a d o o p . i p c . R P C ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523) at org.apache.hadoop.ipc.RPC ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523)atorg.apache.hadoop.ipc.RPCServer.call(RPC.java:991)
at org.apache.hadoop.ipc.Server R p c C a l l . r u n ( S e r v e r . j a v a : 869 ) a t o r g . a p a c h e . h a d o o p . i p c . S e r v e r RpcCall.run(Server.java:869) at org.apache.hadoop.ipc.Server RpcCall.run(Server.java:869)atorg.apache.hadoop.ipc.ServerRpcCall.run(Server.java:815)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2675)
)


        报错的原因是:Hive没有足够的权限来在HDFS上创建数据库目录。默认情况下,Hive使用当前用户的身份来执行操作,因此需要确保当前用户(在这种情况下为“root”)具有在HDFS上创建目录的权限,或者进入 hdfs 用户进行操作


(1)用如下命令创建数据库:



#查看 hive 是否有 /user 目录的权限
[root@hadoop105 hive_db]# hdfs dfs -ls /
drwxr-xr-x - hdfs hadoop 0 2023-05-26 17:52 /user
#如下操作创建数据库
[root@hadoop105 hive_db]# su - hdfs
Last login: Fri May 26 17:49:25 CST 2023 on pts/1
#进入hive交互命令行执行 create database test;
[hdfs@hadoop105 ~]$ hive
hive> create database test;
#或者直接用下面命令创建数据库
[hdfs@hadoop105 ~]$ hive -e “create database test;”


(2)导入 tables.sql



tables.sql 文件删除 LOCATION 到下一条 create 命令直接的内容

LOCATION
'hdfs://hadoop40/user/hive/warehouse//

#可以用如下正则表达式进行批量删除:(即删除从LOCATION开始到下一个CREATE前的内容,改表达式的最后一个LOCATION需要手动删除)
:g/LOCATION/,/CREATE/-1d

#进行导入:
[root@hadoop105 ~]# su - hdfs
[hdfs@hadoop105 ~]$ hive
hive> use test;
hive> source /path/to/destination/tables.sql

#出现错误:
Logging initialized using configuration in jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/hive-common-2.1.1-cdh6.3.2.jar!/hive-log4j2.properties Async: false
FAILED: ParseException line 42:0 missing EOF at ‘CREATE’ near ‘)’
#语法错误,这是因为导出的sql文件中,create() 和 create() 语句直接结束后没有分号隔开
create(
***
***
);
create();
create()
#可以使用如下正则表达式进行批量修改:(其中,g/CREATE.*/-1表示从匹配CREATE的行开始,到上一行结束;s/ / ; / g 表示在行末添加分号,多个 C R E A T E 情况下,第一个 C R E A T E 第一行末尾可能出现分号,需要手动删除 ) : g / C R E A T E . ∗ / − 1 s / /;/g表示在行末添加分号,多个 CREATE 情况下,第一个 CREATE 第一行末尾可能出现分号,需要手动删除) :g/CREATE.*/-1s/ /;/g表示在行末添加分号,多个CREATE情况下,第一个CREATE第一行末尾可能出现分号,需要手动删除):g/CREATE./1s//;/g


(3)元数据导入成功之后,/user/hive/warehouse 下会生成 test.db 目录,下面包含了创建的表信息



#将test.db目录下的文件删除(因为 tables.sql 导入成功后,表的内容是空的,我们要把之前复制的数据库文件拷贝过来替换,所以需要把表文件删除)
[hdfs@hadoop105 ~]$ hdfs dfs -rm -r /user/hive/warehouse/test.db/*


(4)最后进行数据导入,这里也只测试了其中一个表数据



#将整个ods库内容导入到/user/hive/warehouse

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值