2.https://zh.wikipedia.org/wiki/%E5%8F%AF%E7%B8%AE%E6%94%BE%E5%90%91%E9%87%8F%E5%9C%96%E5%BD%A2
3.https://www.cnblogs.com/hnfxs/p/3148483.html
先睹为快
修改所需绘制的图片路径:
在cmd窗口运行main.py文件即可。
效果如下:
原理简介
一. 实现步骤
首先读入原图:
其次将原图像的颜色数量通过K均值聚类降低到指定的数量,K值越大,运行速度越慢,但效果越佳:
每次取出聚类结果中的一种颜色并利用potrace将其转为SVG格式的图形,再解析该格式并用Python自带的turtle库画出来:
二. SVG格式
SVG,即可缩放矢量图形,是一种基于可扩展标记语言(XML),用于描述二维矢量图形的图形格式。SVG主要支持以下几种显示对象:
1.矢量显示对象,基本矢量显示对象包括矩形、圆、椭圆、多边形、直线、任意曲线等;
2.嵌入式外部图像,包括PNG、JPEG、SVG等;
3.文字对象。
更多关于SVG的技术细节请参考:
http://www.w3school.com.cn/svg/svg_intro.asp
三. Turtle库
这里推荐一份turtle库的文档:
https://www.rddoc.com/doc/Python/3.6.0/zh/library/turtle/
四. 贝塞尔曲线
画图时用到了贝塞尔曲线,这里简单介绍一下。
贝塞尔曲线的数学基础是伯恩斯坦多项式,其得名于法国工程师Pierre Bézier。
贝塞尔曲线控制简便却具有极强的描述能力,因此在工业设计领域应用广泛;同时,贝塞尔曲线在矢量图形学领域也占有重要的地位。今天我们最常见的一些矢量绘图软件(例如Flash,CorelDraw,PS等等)均提供了绘制贝塞尔曲线的功能。
线性公式:
给定点P0、P1,线性贝塞尔曲线是一条两点之间的直线,确定方式如下:
其实就是线性插值。
二次方公式:
给定点P0、P1和P2,二阶贝塞尔曲线的路径确定方式如下:
n次方公式:
给定点P0到Pn,n阶贝塞尔曲线的路径确定方式如下:
贝塞尔曲线的绘制方式(以二阶为例):
假设平面内不共线的三个点如下图所示:
在AB上选一点D,BC上选一点E,使得:
现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!