Python是一种流行的编程语言,以其简洁和易读性而闻名,它提供了大量的库和模块,使其成为自动化各种任务的绝佳选择。
我们将探讨9个Python脚本及其代码,可以帮助您自动化各种任务并提高工作效率。无论您是开发人员、数据分析师还是只是想简化工作流程的人,这些脚本都能满足您的需求。
Python是当下最大众化的编程语言,但其基本概念、基础知识还是比较多的,对于小白来说,一时间要掌握这么多还是有些吃力,甚至学完就忘!
因此,编程君为大家准备了《Python数据科学速查表》,帮助你提高效率,查漏补缺!限时扫码,免费领取!
一、自动化文件管理
1.在目录中对文件进行排序
\# Python脚本用于按文件扩展名对目录中的文件进行排序
import os
from shutil import move
def sort\_files(directory\_path):
for filename in os.listdir(directory\_path):
if os.path.isfile(os.path.join(directory\_path, filename)):
file\_extension = filename.split('.')\[\-1\]
destination\_directory = os.path.join(directory\_path, file\_extension)
if not os.path.exists(destination\_directory):
os.makedirs(destination\_directory)
move(os.path.join(directory\_path, filename),
os.path.join(destination\_directory, filename)
这个Python脚本通过根据文件扩展名将文件分类到子目录中来整理目录中的文件。
它识别文件扩展名并将文件移动到相应的子目录中。这对于清理下载文件夹或为特定项目组织文件非常有用。
2.删除空文件
# 用Python脚本删除目录中的空文件夹
import os
def remove_empty_folders(directory_path):
for root, dirs, files in os.walk(directory_path, topdown=False):
for folder in dirs:
folder_path = os.path.join(root, folder)
if not os.listdir(folder_path):
os.rmdir(folder_path)
此Python脚本在指定目录中搜索并删除空文件夹。它可以帮助您保持整洁的文件夹结构,特别是在处理大量数据集时。
3.重命名多个文件
\# 用Python脚本重命名目录中的多个文件
import os
def rename\_files(directory\_path, old\_name, new\_name):
for filename in os.listdir(directory\_path):
if old\_name in filename:
new\_filename = filename.replace(old\_name, new\_name)
os.rename(os.path.join(directory\_path, filename),
os.path.join(directory\_path, new\_filename))
这个Python脚本允许您同时重命名目录中的多个文件。它接受旧名称和新名称作为输入,并将符合指定条件的所有文件的旧名称替换为新名称。
二、用Python进行网络爬虫
1.从网站提取数据
\# 用于网页抓取的Python脚本,从一个网站中提取数据。
import requests
from bs4 import BeautifulSoup
def scrape\_data(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
\# 提取网站中相关数据的代码在这里
这个Python脚本利用requests和BeautifulSoup库从一个网站上爬取数据。它获取网页的内容,并使用BeautifulSoup解析HTML。
您可以自定义脚本以提取特定的数据,如标题、产品信息或价格。
2.批量下载图片
\# 从网站批量下载图像的Python脚本
import requests
def download\_images(url, save\_directory):
response = requests.get(url)
if response.status\_code == 200:
images = response.json() \# 假设API返回一个图片URL的JSON数组
for index, image\_url in enumerate(images):
image\_response = requests.get(image\_url)
if image\_response.status\_code == 200:
with open(f"{save\_directory}/image\_{index}.jpg", "wb") as f:
f.write(image\_response.content)
这个Python脚本旨在从网站批量下载图片。它假设该网站提供一个返回图像URL数组的JSON API。
然后,脚本遍历这些URL并下载图片,将其保存到指定目录中。
3.自动化表单提交
\# 用Python脚本自动化网站上的表单提交
import requests
def submit\_form(url, form\_data):
response = requests.post(url, data=form\_data)
if response.status\_code == 200:
\# 在表单提交后处理响应的代码放在这里
这个Python脚本通过发送带有表单数据的POST请求来自动化网站上的表单提交。
您可以通过提供URL和需要提交的必要表单数据来定制脚本。
紧急!如果你是刚刚接触Python,那你一定要领取这本《Python学习手册》,它可以让你迅速高效的精通Python核心语言基础。限时扫码,免费领取!
三、文本处理和操作
1.在文本文件中计算单词数
\# Python脚本用于统计文本文件中的单词数量
def count\_words(file\_path):
with open(file\_path, 'r') as f:
text = f.read()
word\_count = len(text.split())
return word\_count
这个 Python 脚本读取一个文本文件并计算其中包含的单词数量。
它可以用于快速分析文本文档的内容,或者跟踪写作项目中的字数统计。
2.查找和替换文本
\# 在文件中查找和替换文本的Python脚本
def find\_replace(file\_path, search\_text, replace\_text):
with open(file\_path, 'r') as f:
text = f.read()
modified\_text = text.replace(search\_text, replace\_text)
with open(file\_path, 'w') as f:
f.write(modified\_text)
这个Python脚本在文件中搜索特定文本,并将其替换为所需的文本。
它可以帮助批量替换某些短语或纠正大型文本文件中的错误。
3.生成随机文本
\# 生成随机文本的Python脚本
import random
import string
def generate\_random\_text(length):
letters = string.ascii\_letters + string.digits + string.punctuation
random\_text = ''.join(random.choice(letters) for i in range(length))
return random\_text
这个Python脚本生成指定长度的随机文本。它可以用于测试和模拟,甚至可以作为创意写作的随机内容来源。
四、自动化电子邮件
1.发送个性化电子邮件
\# 用Python脚本向收件人列表发送个性化电子邮件
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
def send\_personalized\_email(sender\_email, sender\_password, recipients, subject, body):
server = smtplib.SMTP('smtp.gmail.com', 587)
server.starttls()
server.login(sender\_email, sender\_password)
for recipient\_email in recipients:
message = MIMEMultipart()
message\['From'\] = sender\_email
message\['To'\] = recipient\_email
message\['Subject'\] = subject
message.attach(MIMEText(body, 'plain'))
server.sendmail(sender\_email, recipient\_email, message.as\_string())
server.quit()
此Python脚本使您能够向一组收件人发送个性化的电子邮件。您可以自定义发件人的电子邮件、密码、主题、正文以及收件人电子邮件列表。
请注意,出于安全原因,在使用Gmail时应使用特定于应用程序的密码。
2.发送电子邮件附件
\# 使用Python脚本发送带有文件附件的电子邮件
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders
def send\_email\_with\_attachment(sender\_email, sender\_password, recipient\_email, subject, body, file\_path):
server = smtplib.SMTP('smtp.gmail.com', 587)
server.starttls()
server.login(sender\_email, sender\_password)
message = MIMEMultipart()
message\['From'\] = sender\_email
message\['To'\] = recipient\_email
message\['Subject'\] = subject
message.attach(MIMEText(body, 'plain'))
with open(file\_path, "rb") as attachment:
part = MIMEBase('application', 'octet-stream')
part.set\_payload(attachment.read())
encoders.encode\_base64(part)
part.add\_header('Content-Disposition', f"attachment; filename= {file\_path}")
message.attach(part)
server.sendmail(sender\_email, recipient\_email, message.as\_string())
server.quit()
这个Python脚本允许您发送带有文件附件的电子邮件。只需提供发件人的电子邮件、密码、收件人的电子邮件、主题、正文以及要附加的文件路径即可。
3.自动电子邮件提醒
\# Python脚本发送自动电子邮件提醒
import smtplib
from email.mime.text import MIMEText
from datetime import datetime, timedelta
def send\_reminder\_email(sender\_email, sender\_password, recipient\_email, subject, body, reminder\_date):
server = smtplib.SMTP('smtp.gmail.com', 587)
server.starttls()
server.login(sender\_email, sender\_password)
now = datetime.now()
reminder\_date = datetime.strptime(reminder\_date, '%Y-%m-%d')
if now.date() == reminder\_date.date():
message = MIMEText(body, 'plain')
message\['From'\] = sender\_email
message\['To'\] = recipient\_email
message\['Subject'\] = subject
server.sendmail(sender\_email, recipient\_email, message.as\_string())
server.quit()
此Python脚本根据指定日期发送自动电子邮件提醒。它对于设置重要任务或事件的提醒非常有用,确保您永远不会错过截止日期。
五、自动化Excel电子表格
1.读写Excel
# Python脚本用于读取和写入数据到Excel电子表格
import pandas as pd
def read_excel(file_path):
df = pd.read_excel(file_path)
return df
def write_to_excel(data, file_path):
df = pd.DataFrame(data)
df.to_excel(file_path, index=False)
此Python脚本使用pandas库从Excel电子表格中读取数据,并将数据写入新的Excel文件。
它使您能够以编程方式处理Excel文件,从而提高数据操作和分析效率。
2.数据分析和可视化
\# 使用pandas和matplotlib进行数据分析和可视化的Python脚本
import pandas as pd
import matplotlib.pyplot as plt
def analyze\_and\_visualize\_data(data):
\# 您的代码在这里用于数据分析和可视化
pass
这个Python脚本使用pandas和matplotlib库进行数据分析和可视化。
它使您能够探索数据集,得出洞察,并创建数据的可视化表示。
3.合并多个工作表
\# 将多个Excel表格合并成一个表格的Python脚本
import pandas as pd
def merge\_sheets(file\_path, output\_file\_path):
xls = pd.ExcelFile(file\_path)
df = pd.DataFrame()
for sheet\_name in xls.sheet\_names:
sheet\_df = pd.read\_excel(xls, sheet\_name)
df = df.append(sheet\_df)
df.to\_excel(output\_file\_path, index=False)
这个Python脚本将来自Excel文件中多个工作表的数据合并到一个工作表中。
当您的数据分散在不同的工作表中,但希望将它们整合以进行进一步分析时,这非常方便。
六、与数据库交互
1.连接到数据库
\# Python脚本连接到数据库并执行查询
import sqlite3
def connect\_to\_database(database\_path):
connection = sqlite3.connect(database\_path)
return connection
def execute\_query(connection, query):
cursor = connection.cursor()
cursor.execute(query)
result = cursor.fetchall()
return result
这个Python脚本允许您连接到SQLite数据库并执行查询。
您可以通过使用适当的Python数据库驱动程序将其调整为与其他数据库管理系统(如MySQL或PostgreSQL)一起使用。
2.执行SQL查询
\# 在数据库上执行SQL查询的Python脚本
import sqlite3
def execute\_query(connection, query):
cursor = connection.cursor()
cursor.execute(query)
result = cursor.fetchall()
return result
这个Python脚本是一个通用的函数,用于在数据库上执行SQL查询。
您可以将查询作为参数传递给该函数,并与数据库连接对象一起使用,它将返回查询的结果。
3.数据备份和恢复
import shutil
def backup\_database(database\_path, backup\_directory):
shutil.copy(database\_path, backup\_directory)
def restore\_database(backup\_path, database\_directory):
shutil.copy(backup\_path, database\_directory)
这个Python脚本允许您在需要时创建数据库备份并恢复它们。这是一项预防措施,用于保护您的宝贵数据免受意外丢失。
七、自动化图像编辑
1.图像调整大小和裁剪
\# Python脚本用于调整大小和裁剪图像
from PIL import Image
def resize\_image(input\_path, output\_path, width, height):
image = Image.open(input\_path)
resized\_image = image.resize((width, height), Image.ANTIALIAS)
resized\_image.save(output\_path)
def crop\_image(input\_path, output\_path, left, top, right, bottom):
image = Image.open(input\_path)
cropped\_image = image.crop((left, top, right, bottom))
cropped\_image.save(output\_path)
此Python脚本使用Python Imaging Library(PIL)来调整大小和裁剪图像。
它可以帮助准备不同显示分辨率或特定用途的图像。
2.向图像添加水印
\# Python脚本用于给图像添加水印
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
def add\_watermark(input\_path, output\_path, watermark\_text):
image = Image.open(input\_path)
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('arial.ttf', 36)
draw.text((10, 10), watermark\_text, fill=(255, 255, 255, 128), font=font)
image.save(output\_path)
这个Python脚本给图像添加水印。您可以自定义水印文本、字体和位置,以个性化您的图片。
3.创建图像缩略图
\# Python脚本用于创建图像缩略图
from PIL import Image
def create\_thumbnail(input\_path, output\_path, size=(128, 128)):
image = Image.open(input\_path)
image.thumbnail(size)
image.save(output\_path)
这个Python脚本从原始图像创建缩略图,可以用于生成预览图像或减小图像大小以便在网站上更快加载。
八、数据清洗和转换
1.从数据中删除重复项
\# Python脚本以从数据中删除重复项
import pandas as pd
def remove\_duplicates(data\_frame):
cleaned\_data = data\_frame.drop\_duplicates()
return cleaned\_data
这个Python脚本利用pandas从数据集中删除重复行。这是一种简单而有效的方法,可以确保数据完整性并改善数据分析。
2.数据规范化
\# 数据归一化的Python脚本
import pandas as pd
def normalize\_data(data\_frame):
normalized\_data = (data\_frame - data\_frame.min()) / (data\_frame.max() - data\_frame.min())
return normalized\_data
这个Python脚本使用最小-最大归一化技术对数据进行规范化。
它将数据集中的值缩放到0和1之间的范围,使得比较不同特征更加容易。
3.处理缺失值
\# 处理数据中缺失值的Python脚本
import pandas as pd
def handle\_missing\_values(data\_frame):
filled\_data = data\_frame.fillna(method='ffill')
return filled\_data
这个 Python 脚本使用 pandas 处理数据集中的缺失值。
它使用前向填充方法,将缺失值填充为前一个非缺失值。
九、自动化PDF操作
1.从PDF中提取文本
\# 从PDF中提取文本的Python脚本
import PyPDF2
def extract\_text\_from\_pdf(file\_path):
with open(file\_path, 'rb') as f:
pdf\_reader = PyPDF2.PdfFileReader(f)
text = ''
for page\_num in range(pdf\_reader.numPages):
page = pdf\_reader.getPage(page\_num)
text += page.extractText()
return text
这个Python脚本使用PyPDF2库从PDF文件中提取文本。
它读取PDF的每一页,并将提取的文本编译成一个字符串。
2.合并多个PDF文件
\# 将多个PDF合并为一个PDF的Python脚本
import PyPDF2
def merge\_pdfs(input\_paths, output\_path):
pdf\_merger = PyPDF2.PdfMerger()
for path in input\_paths:
with open(path, 'rb') as f:
pdf\_merger.append(f)
with open(output\_path, 'wb') as f:
pdf\_merger.write(f)
这个Python脚本将多个PDF文件合并成一个单独的PDF文档。
它非常方便,可以将独立的PDF报告、演示文稿或其他文档合并为一个统一的文件。
3.添加密码保护
\# Python脚本用于为PDF添加密码保护。
import PyPDF2
def add\_password\_protection(input\_path, output\_path, password):
with open(input\_path, 'rb') as f:
pdf\_reader = PyPDF2.PdfFileReader(f)
pdf\_writer = PyPDF2.PdfFileWriter()
for page\_num in range(pdf\_reader.numPages):
page = pdf\_reader.getPage(page\_num)
pdf\_writer.addPage(page)
pdf\_writer.encrypt(password)
with open(output\_path, 'wb') as output\_file:
pdf\_writer.write(output\_file)
此Python脚本为PDF文件添加密码保护。
它使用密码对PDF进行加密,确保只有拥有正确密码的人才能访问内容。
当前Python依旧是大趋势、大热门,相信对于很多初学者,好的资料必不可少。
关于Python学习指南
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!
👉Python所有方向的学习路线👈
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python70个实战练手案例&源码👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉Python大厂面试资料👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉Python副业兼职路线&方法👈
学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。
👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取【保证100%免费
】