为什么各AI平台都主打一个智能体(Agent)

当各类AI平台用得多了之后,你会发现一个有趣的现象,现在各AI平台都主打一个智能体,并且都有自己的智能体市场。那为什么大家选择的应用形态,不是去开发App、不是去搞SaaS服务,而是要专注于卷智能体呢?今天我们就来好好聊聊这个事。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

智能体概述

首先解释下什么是智能体?

AI智能体,就是我们传统说的AI Agent。这个词虽没有明确的定义,但是在行业内已达成一个默认的共识,这主要源于OpenAI曾经发表的一篇文章,它在里面将AI Agent定义为:以大语言模型作为大脑,具备自我感知、规划、记忆和使用工具的能力,能自动化的处理执行用户复杂任务。如果用一句简单的话来理解就是AI Agent是具备独立思考和行动的AI智能体。不同于传统的人工智能,AI Agent 具备通过独立思考、调用工具去逐步完成给定目标的能力。Agent拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互。

(Agent智能体)

那如何实现一个AI智能体呢?

要实现一个AI Agent,一般有下面三个部分组成,我们用一个自动驾驶为例子来更好的帮助我们理解。

假设你正在考虑购买一辆自动驾驶汽车。这辆汽车配备了各种传感器和计算机系统,以实现自主驾驶。在这个情景中,AI Agent是车辆上的人工智能系统,它可以执行以下任务:

1)、感知(Perception)

AI Agent使用激光雷达、摄像头和其他传感器来感知周围环境,包括道路、车辆和行人。

2)、分析&决策(使用Agent的大脑Brain)

它分析传感器数据,识别道路上的障碍物、交通信号和其他车辆的位置。基于分析结果,AI Agent做出决策,例如加速、减速、转弯或停车,以确保安全驾驶。

3)、执行(Action)

它控制汽车的引擎、制动和转向系统,以执行所做出的决策。

但是现在AI平台上的智能体一般都比较简单,没有那么多复杂的部分组成,本质上是通过一个简单的页面,自然语言描述需求,背后通过行动系统对接外部逻辑,最后交给大模型处理。

为什么大家选择了卷智能体市场

最早的AI智能体平台,那需要从OpenAI的GPTs Store说起。他们是最早盯上智能体赛道的,但是其发展并不是那么顺利,因为它只是一种通过简单限定词、指令或角色扮演来形成的AI助手,并且它的产品太多了,同质化严重,但无疑给大家提供了一种新的思路。OpenAI当时并没有说定位去做一个AI应用的Store,也没有说主打一个基于浏览器的AI插件市场,而是放在了快速构建Agent上,依赖其背后的ChatGPT大模型。

最后分析下为什么不选择SaaS平台?主要原因还是SaaS平台,需要大量的定制化和本地化的需求,相对复杂和成本较高,制作周期长,并且创作门槛高,并不是现在大模型下的最佳选择。但是AI智能体则不同,它聚焦于通过最直接的方式,提供更高效的自动化服务,解决客户的实际问题。还有最重要的一点,大多数AI智能体的创作门槛很低,不需要你具备编程能力,只需要通过自然语言描述+工作流,就可以快速开发一个智能体。所以现在,一个好的AI领域产品经理未来将会更有市场。那么,因为AI智能体的创作门槛降低了,人人都可以基于AI平台创造属于自己的智能体,供自己使用,也可以将你制作的智能体分享到平台,供大家使用,这就无疑丰富了智能体的生态。而现在各个AI平台都会对公开的智能体进行审核,否则和GPTs Store一样了,同质化严重,并且品质难以得到保证。

所以你这么来看,当你有某一方面的需求,想要解决具体问题的时候,你不需要去App应用商店去下载一个应用吧,也不说你必须之前注册登录一个SaaS平台,去用SaaS服务吧。而智能体你只需登录一个AI平台,如天工AI、豆包、智谱清言等都可以,选择和搜索可以快速解决你痛点的智能体直接使用即可。

相比于SaaS服务,现在Agent或许更容易赚到钱。现在能看到的赚钱模式,除了一些付费的Agent外,最主要还是调用通过调用后端的大模型进行盈利,Agent使用频率越高、解决问题的能力越强,吸引的用户就越多,自然也就需要更多的调用。

所以在我看来,在未来,智能体这种新兴的市场形态,一定会取代传统的SaaS市场形态,甚至于取代传统的软件市场形态。并且现在大多数智能体,都可以免费使用。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT猫仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值