当前,AI大模型逐渐在金融机构中得到落地,这篇文章主要说明具体的落地情况!
前排提示,文末有大模型AGI-CSDN独家资料包哦!
1.应用于非决策类环节
英伟达的调研显示,近半数金融机构已采用大模型,主要用于生成报告、提升客户体验、创造合成数据和营销。还有超过一半的机构正在考虑使用大模型。
整体而言,主要被应用于业务场景简单的非决策类环节,比如赋能主要赋能对客服务、数据挖掘、业务助手等环节。而涉及提供强金融投资建议、需要承担核心分析决策任务的业务场景和业务环节中,大模型还不能完全取代专家,而是作为辅助工具。
图1.大模型在金融领域的代表性应用
2.提升金融服务质量
从业务流程的角度看,金融AI大模型对营销运营、分析决策、中后台运营支持等业务流程有很大的提升作用。
(1)在营销、运营环节,比如实现营销获客、产品推介、客户运营等功能,大模型能较好地赋能前台对客环节。
客户互动:通过智能客服系统,提供7*24小时的即时响应,解答客户疑问,提升客户满意度。
个性化服务:通过分析客户数据,大模型帮助定制个性化的产品推介和营销策略,提高客户参与度。
销售支持:辅助销售人员和顾问,通过数据分析洞察客户需求,设计针对性的营销素材和物料,加速销售流程。
(2)在分析决策环节,通过信息搜集、简单归纳、内容生成的服务,提供金融产品设计、风险定价、投资建议等。
决策前:大模型快速搜集和整理大量金融数据,为决策提供全面的信息基础。
简单归纳:对搜集到的数据进行初步分析,识别趋势和模式,为复杂决策提供简化的视角。
生成内容:比如生成文档和PPT,快速将决策结果转化为可传达的内容,提高决策的执行效率。
(3)在中台运营支持方面,提供风险管理、质控合规、舆情检测等服务。
风险管理:通过分析市场数据和内部报告,预测潜在风险,帮助制定风险缓解策略。
质控合规:检查操作流程和文档,确保符合监管要求,减少合规风险。
舆情监测:监控社交媒体和新闻,及时捕捉对品牌和产品的影响,为危机管理提供支持。
工具优化:优化内部开发工具和代码,提高开发效率,降低运营成本。
图2.大模型赋能金融领域各业务细分环节
3.赋能五大细分金融场景
从应用的业务场景来看,大模型在支付、信贷、投顾、投研、保险五大金融业务场景中均存在落地应用。
(1)在支付领域,用于提升支付机构的风险识别及反欺诈能力。一方面,整合并分析多种数据,增加风控的数据维度;另外,生成大量合成数据,训练和优化风控及反欺诈算法,提高其准确性。
(2)在信贷领域,覆盖从营销到贷后管理的全过程,旨在提高效率和降低风险。
营销获客:帮助精准定位潜在客户,提升营销效果,增加客户转化率。
客户运营:通过分析客户数据,大模型优化客户服务,提高客户满意度和忠诚度。
贷后催收:大模型辅助自动化催收流程,提高催收效率,减少坏账损失。
信息处理:自动抽取和整理贷款申请信息,加快审批流程,提升风险定价的准确性。
(3)在财富管理(投顾)领域,覆盖客户的获取、 留存、转化的全生命周期。
第一,能够赋能销售团队提升人效和服务、并有效识别潜在用户。
第二,增强推荐系统,为投顾提供更精准的金融产品匹配。
第三,资产配置:智能推荐资产配置方案,优化投资组合。
(4)在投研领域,通过对信息的收集、整合、加工,赋能投研的决策意见输出。
在搜索环节,快速整合信息,提升投研投资活动获取信息的效率。
在读取环节,提炼核心内容。
在运算分析环节,辅助投资观点和决策的内容。
在写作环节,承担初步的投研材料生成工作。
在知识复用环节,提升机构内部知识库的检索效率,便利信息调用、减少重复劳动。
(5)在保险领域,应用于渠道营销、核保理赔、辅助产品研发、风险管理等环节。
在渠道营销方面,帮助设计营销素材,并作为智能客服向客户提供个性化的保险产品推荐。
在核保理赔方面,辅助人工核保、辅助收集理赔文件、审核真实性等。
在产品设计方面,帮助保险精算人员更好地洞察客户需求、市场趋势和风险特征,提升获取信息效率。
在风险管理方面,通过处理历史保险索赔记录、客户个人资料等海量数据,提供精准的风险评估和决策支持。
4.金融垂直类大模型开发以及应用
(1)通用模型难以提供深度服务
在内部模型自身迭代和多技术协同的作用下,出现了集图像识别、语义理解、视觉感知于一体的多模态体系。然而,由于行业深度信息的缺失,通用大模型在特定领域很难提供高价值、专业化的服务。
(2)行业需求与模型能力契合
金融行业属于数据、信息密集型产业,对于多渠道信息汇总与数据处理能力有较高要求;同时,行业要求从业人员专业知识储备与经验,来完成对金融业务的判断、咨询服务、报告产出等工作。而相对应的,大模型恰好可以处理复杂信息,并基于原始数据和经验给出相应的解决方案。
基于此,近2年,国内外的垂直类大模型在逐步推出并落地。
图3.国外代表性的金融领域垂类大模型
图4.国内代表性的金融领域垂类大模型
目前国内比较新的模型是HithinkGPT和妙想大模型,下面简单对比两个模型:
(1)从技术架构、token数、落地方式,有较大差别,总体看妙想大模型略胜:
(2)用户体验角度:分析较浅显——分析的深度还不太够,无法取代专业投顾。偏向于技术分析——在回答个股的问题时,两个模型均注重于估值、技术、资金流向,对基本面内容的回答较少。回答准确率偏低——针对用户的提问,偶尔出现答非所问的情况,联系上下文的能力不强。有些问题的逻辑框架不顺畅。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓