大语言模型在金融风控中的应用
关键词:大语言模型,金融风控,自然语言处理,监督学习,微调,风险评估,欺诈检测,信用评分
1. 背景介绍
1.1 问题的由来
金融风控是金融机构确保其资产安全和业务稳定的重要手段。随着金融市场的复杂性和交易量的增加,传统的风控方法已难以应对日益增长的风险。近年来,随着大数据和人工智能技术的快速发展,金融风控领域逐渐引入了新的技术手段,其中大语言模型的应用尤为引人注目。
大语言模型(Large Language Models, LLMs)通过在大规模文本数据上进行预训练,具备了强大的语言理解和生成能力。这些模型不仅能够处理结构化数据,还能从非结构化文本中提取有价值的信息,从而为金融风控提供了新的解决方案。
1.2 研究现状
目前,大语言模型在金融风控中的应用主要集中在以下几个方面:
- 欺诈检测:通过分析交易记录、客户行为等数据,识别潜在的欺诈行为。
- 信用评分:基于客户的历史数据和行为,评估其信用风险。
- 舆情监测:实时监测市场和社交媒