欧系数学一眼假系列3.超立体与托里小号

欧系数学认为,有一种“表面积无限大而(包裹的)体积趋于0”的几何体,是为超立体。比如​意大利数学家托里拆利就实现了超立体演示,他将y=1/x(调和级数)轨迹用微积分理论、一圈一圈地环绕,得到长度无限的小号,该小号“表面积无限大、内容积仅为π”,这一牛逼性质迅速轰动了数学界,被认为是超立体的实践版,故命名“托里拆利小号”。

47a04644eb9e41f3872796225f547fdb?_iz=31825&from=article.detail&lk3s=717a2be7&x-expires=1706708602&x-signature=Y2fi0jOatCHPCAIiDAsSXBRohJ4%3D

托里拆利小号,一个百分百的臆想

我们来看一下上述“小号”的所谓牛逼性质,上过初中的人都知道,几何体的内表面积与外表面积是完全相等的(厚度不计),由此可知“装满>涂遍”;既然装满小号只需π单位,那么涂遍外表必然<π单位,为啥托里拆利的结论会相反?又为何欧洲学界会集体失智认可所谓的“牛逼性质”?

中华级数求和公式能够证明y=1/x轨迹采用托里拆利方法做小号,其内容积不是π、而是π/24,它的外表“理论上”可以无限长但呈纤成毫、谈不上面积。

d6d626e507894e45a144e26ede9be91b?_iz=31825&from=article.detail&lk3s=717a2be7&x-expires=1706708602&x-signature=6r2i551qXtRcG8MHfEg9fKCx%2BQM%3D

中华级数为Σ1/n量身打造的求和公式

再看​超立体自身的伪命题:有立方体abc,a>0、b>0、c>0,已知表面积S=2(ab+bc+ac)→∞,求证体积V=abc→0是否成立?

相信只要初识几何、略有丁点智商的人都知道:表面积与包裹的体积成正比关系,无论abc怎样变化,只要有一个为∞、另外两个不为0,则S、V必然都趋于无穷大,绝无“S→∞、V→0”的任何可能。

f4e41ca702314cbd81f787216f81a7cf?_iz=31825&from=article.detail&lk3s=717a2be7&x-expires=1706708602&x-signature=LYWt%2FOxtjSNsJ4OVgI3kdk5hvfM%3D

 

问题来了:既然“超立体”理论乃臆想天开一派胡言,为何中国数学人会对着它五体投地呢?是皈依了欧系,智商就被清零、变傻了吗?

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我来详细解释一下。 首先,根据托里斯利原理,液体在P处的水平流速$v$可以表示为$v=\sqrt{2gh}$,其中$h$为液面下深度。 设孔口面积为$g$,则单位时间内通过孔口的液体体积为$Q=gv\cos\theta dA$,其中$\cos\theta$表示液体入射角度,由于孔口是垂直于底的,因此$\cos\theta=0$。 因此,我们可以将单位时间内通过孔口的液体体积$Q$表示为: $$ Q = \iint_D gv\cos\theta dA = \iint_D gv\cdot 0 \cdot dA = 0 $$ 这个结果显然是不对的,因为液体肯定会从孔口流出。原因是上式中$\cos\theta$不是恒为0的,而是在不同位置上有不同的值。 因此,我们需要对上式进行修正,将$\cos\theta$替换为实际的值。由于孔口是垂直于底的,因此我们可以将$\cos\theta$替换为$\cos\theta=\cos\frac{\pi}{2}=0$。这样,上式就变成了: $$ Q = \iint_D gv\cos\theta dA = \iint_D gv\cdot 0 \cdot dA = 0 $$ 这个结果显然也是不对的,因为液体肯定会从孔口流出。所以我们需要继续修正,将$\cos\theta$替换为实际的值。 考虑将孔口D分成许多小的面积$dA_i$,每个小面积上液体的入射角度$\theta_i$都可以近似视为相同的常数$\theta$。则有: $$ Q = \sum_i gv_i\cos\theta_i dA_i \approx \sum_i gv_i\cos\theta dA_i $$ 将$dA_i$视为无穷小量$dA$,则有: $$ Q \approx \sum_i gv_i\cos\theta dA = g\int_D v\cos\theta dA $$ 现在的问题是如何求解$\int_D v\cos\theta dA$。因为$v$是常数,所以可以将$v$提到积分号外面,得到: $$ \int_D v\cos\theta dA = v\int_D \cos\theta dA $$ 因为$\cos\theta$是$\theta$的函数,所以可以将积分转化为对$\theta$的积分,得到: $$ \int_D \cos\theta dA = \int_0^{2\pi}\int_0^r \cos\theta rdrd\theta $$ 其中$r$是孔口到$D$上某点的距离。 因为孔口是垂直于底的,所以$\theta=\frac{\pi}{2}$时$\cos\theta=0$,即液体沿着底面流动时不会流出。因此,我们只需要考虑液体从孔口到$D$上某点的距离$r$在$0$到$h$之间的部分即可,得到: $$ \int_D \cos\theta dA = \int_0^{2\pi}\int_0^h \cos\theta rdrd\theta = \pi h $$ 因此,我们可以将$Q$表示为: $$ Q \approx g\int_D v\cos\theta dA = gv\int_D \cos\theta dA = g\pi hv $$ 这就是单位时间内通过孔口D的总流量Q。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值