ylbtech-学术-几何-维-思维几何:超正方体(几何中的思维方体) |
点动成线,线动成面,面动成体,正方体动成超立方体。
1.返回顶部 |
1、
-
中文名:超正方体
外文名:Tesseract
别 称:超立方体或正八面体
-
性 质:四维空间里的几何产物
特 点:无2维距离、角度概念
所属学科:四维几何学
2、
2.返回顶部 |
1、
概述
超立方体,又被称为
正八胞体(8-cell,Regular octachoron),
立方体柱(Cubic prism),
4-4边形柱(4-4 duoprism),是
一个四维空间里的几何产物
需要说一下“超立方体”的英文应该是Tesseract而不是Hypercube,Hypercube在英文维基百科上是指N维立方体(一维的线段,二维的正方形,三维的立方体)的总称。
投影
施莱格尔
我们看到的三维物体是经过一次投影之后呈现在
视网膜上,但四维立方体不能通过普通投影的方式让人们看见,只能先投影成三维的物体,再经过一次投影才能呈现在视网膜上。
对于生活在
三维空间的人类来说,
四维世界是很神秘的概念。正像生活在
二维世界里的小人(如果存在的话)很难想象三维世界一样,我们同样难于想象四维世界。不过也
正像我们可以通过研究三维物体在
二维物体上的投影来研究想象三维物体一样,我们也可以通过
四维物体在三维世界中的
立体图形投影来研究四维世界。
图1 所示的是一个
立方体在二维世界中的投影(事实上投影应当是普通的正方形,图为二维生物可能的想象图)。二维小人多多少少可以通过这些投影来想象那个“三 维立方体”的神秘图形。他们可以数出这个
立方体有8个顶点,12条边,6个面。可以看到图1的样子像是一个大正方形套一个小正方形,那我们用一点类比的思维,把一个大立方体“套住”一个小立方体,这就得到一个超正方体的一种
三维投影(当然图2是它的三维投影)
在
二维世界里(不考虑时间轴)要把不透明图形简化的只有顶点(二维物体中的零维框架)之后二维(如果存在)小人才能看得到内部,在我们在三维世界里要简化到棱长(三维物体中的一维框架)才能看到物体内部。所以二维小人(如果存在)研究三维立方体只会先把三维立方体的顶点投影在二维平面上,在投影成一条一位的直线。
正如图1的投影中,
立方体的六个面也要把最外部的正方形也要算进去,超正方体表面的八个立方体也包括“最外部”的那一个
可以知道,超正方体有8个胞(立方体)、24个面(
正方形)、32条棱和16个顶点
值得说一下的是,在图2中,投影后一大一小两个立方体的边长比正好是3:1,这个是通过计算得到的。
思维方式
如果四维超正方体不太好想象的话,我们换成球试试吧。三维球嘛,无论从哪个方向投影在
二维平面上都只是一个半径等同的圆形,这样我们就很容易想到
四维球在三维世界中的投影只不过是一个半径等同的球了。如果还想要讨论得深入一些,不妨试试球穿越问题。比如说一个球穿过一个二维平面,二维小人会发现平面上凭空冒出一个慢慢变大的点,后来眼看着扩张成
圆,又慢慢缩小成点,最后突然消失。如果这个令二维小人惊讶不已的事实让你并不觉得奇怪,那么以下的情形你定会吃惊不小;在你面前无中生有地出现一个点,扩成球又缩回点,再突然消失。多么神奇!其 实这只不过是四维球穿越三维世界的情形。
这里讲一种思维方式,当你不能够理解四维的某些描述的时候,试着把自己当作二维人生活在扁平的世界里看三维(你能够理解,但是你的描述是受限的)。
简单描述:1、超立方体无2维距离、
角度概念。
2、超立方体中任何一顶点以恒定速度到相邻顶点所用时间相等。(所有边长相等)
球极投影
同样的方法,将超正方体的表面膨胀,会得到一个“超球”(Hypersphere)
当我们置身于超正方体膨胀成的超球中的时候,我们就会看见右图的这个情景——此时我们置身在“最外部”的立方体(当然是膨胀了的)面上
平行投影。
上面的两种其实都属于透视投影——实际上立方体的平行投影是绝对不会出现一大一小大正方形
右图是超正方体的二维线架
正投影,ABCD分别是四个轴,注意“相邻”两根轴的
夹角都是45度的。16个
顶点坐标分别是(±1,±1,±1,±1)(下文有简单推导),然后按照给出的一个一个填上去就是的了(方法说上去有点烦,大家可以用几何画板画画这个投影,其实蛮简单的)。
展开图
大家一定知道把
立方体的六个面展开的样子吧,其中一种展开法如右图。
类比一下,即可得到超正方体的其中一种展开法,如最右图,其中一个
立方体被藏在三维展开图里边了。
规律
零维的一个点,包含1个零维元素(点)无方向
一维的一条线段,包含1个一维元素(线段),2个零维元素(端点)平面中单一方向
二维的一个正方形,包含1个二维元素(平面),4个一维元素(边),4个零维元素(顶点)平面中多个方向
三维的一个正方体,包含1个三维元素(三维立体),6个二维元素(面),12个一维元素(棱),8个零维元素(顶点)空间中多个方向
四维的一个超正方体,包含1个四维元素(四维超立体),8个三维立体,24个二维元素(面),32个一维元素(棱),16个零维元素(顶点)方向未知
对比下列算式:
(x+2)^0=1
(x+2)^1=x+2
(x+2)^2=x²+4x+4
(x+2)^3=x^3+6x^2+12x+8
可以归纳出:一个n维立方形(n-cube)所包含的k维元素个数等于(x+2)^n展开式的k次项系数。
(x+2)^4=x^4+8x^3+24x^2+32x+16
可以得出:超正方体有8个
立方体(胞),24个面,32条线段,16个点。
这有助于我们印证四维超正方体的构造。
符号
超正方体Tesseract的
施莱夫利符号有几个:
{4,3,3}(特指它是正多胞体Tesseract);

正
(5张)
{4,3}x{}(代指Cubic prism);
{4}x{4}(4-4 duoprism,由两个正方形绝对垂直得到);
{4}x{}x{}(代指Square prismatic prism,就是一个正方形柱——通俗的说还是立方体——的柱形);
{}x{}x{}x{}(代指Line segmentary prismatic prismatic prism,直线部分棱的棱柱
坐标
超正方体的顶点坐标可以用类比的方式推导:
正方形的坐标:(±1,±1)
正方体的坐标:(±1,±1,±1)
那么类比可以得到四维超正方体的顶点:(±1,±1,±1,±1)
与十六胞体
将正八胞体中每个正方体中心作中心所在正方体的正方形面垂线得
正十六胞体,正十六胞体作类似处理也可以得正八胞体。
2、
3.返回顶部 |
1.1

1.2

1.3
1.4

1.5

1.6

1.7
1.8

1.9

2.0
2.1
4.返回顶部 |
5.返回顶部 |
1、
2、
6.返回顶部 |
![]() | 作者:ylbtech 出处:http://ylbtech.cnblogs.com/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。 |