小白入门Pytorch:实战训练一

本文为🔗小白入门Pytorch内部限免文章
参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可

  • 🍨 本文为🔗小白入门Pytorch中的学习记录博客
  • 🍦 参考文章:【小白入门Pytorch】mnist手写数字识别
  • 🍖 原作者:K同学啊

    K同学啊


    一、 前期准备

  • 1.查看版本
  • import torch
    
    print(torch.__version__) # 查看pytorch版本
    

    2.0.1+cu118

  • 2.设置GPU,哈哈哈,我没有

  • import torch
    import torch.nn as nn
    import matplotlib.pyplot as plt
    import torchvision
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    device

    3.导入数据

  • MNIST是一个手写体数字的图片数据集,由美国国家标准与技术研究所(National Institute of Standards and Technology,NIST)发起并整理,包含来自250个不同人手写数字的图片。该数据集的收集目的是希望通过算法,实现对手写数字的识别。数据集中的图片规格为28像素×28像素,每个像素点用无符号数表示,图像大小为2828。数据集的训练集包含60000个样本,测试集包含10000个样本。

    该数据集自1998年起,被广泛地应用于机器学习和深度学习领域,例如线性分类器(Linear Classifiers)、K-近邻算法(K-Nearest Neighbors)、支持向量机(SVMs)、神经网络(Neural Nets)、卷积神经网络(Convolutional Nets)等算法,用来测试算法的效果。

    MNIST数据集官网提供了数据集的下载,主要包括四个文件:训练集和测试集的图片数据和标签数据。官网上的MNIST训练集标签的格式为offset,其中offset是偏置,记录这个字段起始位置在这串数据的第几个字节。

    总的来说,MNIST是一个经典的手写数字数据集,被广泛应用于机器学习和深度学习领域,对于手写数字识别算法的评估和训练有着重要的意义。

  • 原文介绍

  • 使用dataset下载MNIST数据集,并划分好训练集与测试集

    使用dataloader加载数据,并设置好基本的batch_size

    ⭐ torchvision.datasets.MNIST详解

    torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的MNIST数据集。

    函数原型:

    torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)
    

    参数说明:

  • root (string) :数据地址
  • train (string) :True = 训练集,False = 测试集
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。
    train_ds = torchvision.datasets.MNIST('data', 
                                          train=True, 
                                          transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                          download=True)
    
    test_ds  = torchvision.datasets.MNIST('data', 
                                          train=False, 
                                          transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                          download=True)
    

    想法

  • 使用PyTorch的torchvision库来加载MNIST数据集的代码创建一个训练数据集(train_ds)和一个测试数据集(test_ds)。'data'是存储数据集的目录,'train=True'表示我们想要加载训练数据集,'transform=torchvision.transforms.ToTensor()'将数据转换为PyTorch的Tensor类型。'download=True'表示如果数据集不存在,会自动下载。

  •  torch.utils.data.DataLoader详解

    torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

    函数原型:

    torch.utils.data.DataLoader(datasetbatch_size=1shuffle=Nonesampler=Nonebatch_sampler=Nonenum_workers=0collate_fn=Nonepin_memory=Falsedrop_last=Falsetimeout=0worker_init_fn=Nonemultiprocessing_context=Nonegenerator=None*prefetch_factor=2persistent_workers=Falsepin_memory_device='')

    参数说明:

  • dataset(string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle(bool,optional) : 如果为True,每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers(int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last(bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout(numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn(callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。 (默认:None)
  • batch_size = 32
    
    train_dl = torch.utils.data.DataLoader(train_ds, 
                                           batch_size=batch_size, 
                                           shuffle=True)
    
    test_dl  = torch.utils.data.DataLoader(test_ds, 
                                           batch_size=batch_size)
    # 取一个批次查看数据格式
    # 数据的shape为:[batch_size, channel, height, weight]
    # 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
    imgs, labels = next(iter(train_dl))
    imgs.shape

    使用PyTorch库来处理MNIST数据集,并使用DataLoader来创建一个训练数据加载器和测试数据加载器。

    DataLoader的目的是为了在训练和测试过程中提供可迭代的对象,以便于你可以在每个训练批次(batch)中获取数据。

    batch_size = 32,这意味着在每个训练批次中,你会获取32个图像和对应的标签。

    使用next(iter(train_dl))时,从训练数据加载器中获取了一个批次的数据。这个批次的数据应该是一个包含图像和标签的元组。

    imgs.shape是用来获取图像数据的形状。根据你的代码,imgs应该是一个包含图像数据的张量(tensor),其形状应该是[batch_size, channel, height, weight]

    3. 数据可视化

  • squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。
  • import numpy as np
    
     # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
    plt.figure(figsize=(20, 5)) 
    for i, imgs in enumerate(imgs[:20]):
        # 维度缩减
        npimg = np.squeeze(imgs.numpy())
        # 将整个figure分成2行10列,绘制第i+1个子图。
        plt.subplot(2, 10, i+1)
        plt.imshow(npimg, cmap=plt.cm.binary)
        plt.axis('off')

  • import numpy as np: 这行代码导入了NumPy库,并用np作为别名。NumPy是一个用于处理数组和矩阵的库,常用于处理大规模的数据。
  • plt.figure(figsize=(20, 5)): 这行代码创建了一个新的图形窗口,并指定其大小为20英寸宽,5英寸高。
  • for i, imgs in enumerate(imgs[:20]):: 这行代码使用enumerate函数对imgs列表的前20个元素进行循环。enumerate函数会返回每个元素的索引和值。
  • npimg = np.squeeze(imgs.numpy()): 这行代码将imgs(应该是一个NumPy数组)转换为NumPy数组,并尝试删除额外的维度。如果imgs是一个二维数组,那么np.squeeze不会有任何效果。如果是一个一维数组,它将会尝试通过增加一个额外的维度(在第0个维度,即“行”)来转换它。
  • plt.subplot(2, 10, i+1): 这行代码将当前的图形窗口划分为2行10列的网格,并设置当前活动的子图为第i+1个子图。
  • plt.imshow(npimg, cmap=plt.cm.binary): 这行代码在当前活动的子图中显示npimgcmap=plt.cm.binary指定了颜色映射为二值颜色映射。
  • 二、构建简单的CNN网络

  • 对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍
  • 想法

  • 这是一个简单卷积神经网络(Convolutional Neural Network,CNN)模型,用于图像分类任务。这个模型包含两个主要部分:特征提取网络和分类网络。

  • 特征提取网络:由两个卷积层(conv1conv2)和两个最大池化层(pool1pool2)组成。第一层卷积层将输入图像的每个像素转化为32个特征,然后通过池化层减小特征图的尺寸。第二层卷积层进一步提取更高级的特征,并再次通过池化层减小特征图的尺寸。
  • 分类网络:由两个全连接层(fc1fc2)组成。全连接层fc1将上一级的特征图展平后转化为64维的向量,然后通过全连接层fc2将其转化为10维向量,对应10个类别。
  • 前向传播(forward)函数定义了输入数据x在这个网络中的流动方式。首先,数据通过特征提取网络提取特征,然后将这些特征传递给全连接层进行分类。

  • 三、训练模型

  • 1. 设置超参数

  • loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    learn_rate = 1e-2 # 学习率
    opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

    2. 编写训练函数

    1. optimizer.zero_grad()

    函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

    2. loss.backward()

    PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

    具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

    更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

    如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

    3. optimizer.step()

    step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

    注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

  • # 训练循环
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
        num_batches = len(dataloader)   # 批次数目,1875(60000/32)
    
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
        
        for X, y in dataloader:  # 获取图片及其标签
            X, y = X.to(device), y.to(device)
            
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
            
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
            
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
                
        train_acc  /= size
        train_loss /= num_batches
    
        return train_acc, train_loss

  • pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
  • (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
  • (pred.argmax(1) == y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。

  • .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
  • .sum()是对数组中的元素求和,计算出预测正确的样本数量。
  • .item()将求和结果转换为标量值,以便在 Python 中使用或打印。
    • 解释
  • 函数定义:

    • def train(dataloader, model, loss_fn, optimizer)::定义了一个名为train的函数,它接受四个参数:数据加载器dataloader、要训练的模型model、计算损失的函数loss_fn和模型参数优化器optimizer
  • 数据集大小和批次数:

    • size = len(dataloader.dataset): 这行代码获取训练集的大小,即图片的总数量。
    • num_batches = len(dataloader): 这行代码计算了数据加载器的长度,也就是将要处理的批次数。批次数是训练过程中将数据分批次输入模型的数量。
  • 初始化训练损失和准确度:

    • train_loss, train_acc = 0, 0: 初始化两个变量,分别用于记录训练过程中的总损失和总准确度。
  • 循环处理数据:

    • for X, y in dataloader::使用数据加载器dataloader进行迭代,每次迭代返回一对(X, y),其中X是输入数据,y是对应的标签。
    • X, y = X.to(device), y.to(device): 这行代码将输入数据X和标签y移动到指定设备上(通常是GPU或CPU)。
  • 前向传播和计算损失:

    • pred = model(X): 将输入数据X通过模型model得到预测结果pred
    • loss = loss_fn(pred, y): 使用损失函数loss_fn计算预测结果pred和真实标签y之间的损失。
  • 反向传播和优化:

    • optimizer.zero_grad(): 这一行是清零优化器梯度的操作。在PyTorch中,梯度是在反向传播时累积的,因此每次训练迭代开始时,梯度应该被归零。
    • loss.backward(): 执行反向传播,计算损失关于模型参数的梯度。
    • optimizer.step(): 使用优化器自动更新模型参数。
  • 记录损失和准确度:

    • train_acc += (pred.argmax(1) == y).type(torch.float).sum().item(): 这行代码计算并累积训练过程中的准确度。pred.argmax(1)返回每个输入数据的最大概率对应的类别,与真实标签y比较后得到一个布尔值,然后求和并转换为浮点数,最后取元素值得到累积的准确度。
    • train_loss += loss.item(): 这行代码计算并累积训练过程中的总损失。.item()将最后一个批次(可能是一个)的损失转换为Python数值。
  • 平均损失和准确度:

    • train_acc /= size 和 train_loss /= num_batches: 这两行代码将累积的准确度和损失除以它们各自的总数,得到平均准确度和平均损失。
  • 返回结果:

    • return train_acc, train_loss: 函数返回训练过程中的平均准确度和平均损失。
    • 3. 编写测试函数

      测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

    • def test (dataloader, model, loss_fn):
          size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
          num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
          test_loss, test_acc = 0, 0
          
          # 当不进行训练时,停止梯度更新,节省计算内存消耗
          with torch.no_grad():
              for imgs, target in dataloader:
                  imgs, target = imgs.to(device), target.to(device)
                  
                  # 计算loss
                  target_pred = model(imgs)
                  loss        = loss_fn(target_pred, target)
                  
                  test_loss += loss.item()
                  test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
      
          test_acc  /= size
          test_loss /= num_batches
      
          return test_acc, test_loss
      

      解释

    • def test (dataloader, model, loss_fn)::定义一个名为test的函数,它接受三个参数:数据加载器dataloader、模型model和损失函数loss_fn
    • size = len(dataloader.dataset): 这行代码获取测试集的大小。
    • num_batches = len(dataloader): 这行代码计算了数据加载器的长度,也就是将要处理的批次数。
    • test_loss, test_acc = 0, 0: 初始化两个变量,用于记录测试过程中的总损失和总准确度。
    • with torch.no_grad(): 这个上下文管理器关闭了梯度计算,这可以节省内存,因为测试阶段我们不需要计算梯度。
    • for imgs, target in dataloader::对数据加载器中的每个批次进行迭代,imgs是输入数据,target是对应的标签。
    • imgs, target = imgs.to(device), target.to(device): 这行代码将输入数据和标签移动到指定设备上(通常是GPU或CPU)。
    • target_pred = model(imgs): 使用模型对输入数据进行预测。
    • loss = loss_fn(target_pred, target): 使用损失函数计算模型预测结果和真实标签之间的损失。
    • test_loss += loss.item(): 累积损失。
    • test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item(): 累积准确度。这里,target_pred.argmax(1)返回每个输入数据的最大概率对应的类别,与真实标签比较后得到一个布尔值(0或1),然后求和并转换为浮点数,最后取元素值得到累积的准确度。
    • test_acc /= size 和 test_loss /= num_batches: 这两行代码分别将累积的准确度和损失除以它们的总数,得到平均准确度和平均损失。
    • return test_acc, test_loss: 返回平均准确度和平均损失。
    • 4. 正式训练

      1. model.train()

      model.train()的作用是启用 Batch Normalization 和 Dropout。

      如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

      2. model.eval()

      model.eval()的作用是不启用 Batch Normalization 和 Dropout。

      如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

      训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。
       

      epochs     = 5
      train_loss = []
      train_acc  = []
      test_loss  = []
      test_acc   = []
      
      for epoch in range(epochs):
          model.train()
          epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
          
          model.eval()
          epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
          
          train_acc.append(epoch_train_acc)
          train_loss.append(epoch_train_loss)
          test_acc.append(epoch_test_acc)
          test_loss.append(epoch_test_loss)
          
          template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
          print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
      print('Done')

      五,可视化

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东太极

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值