三角函数不定积分(六)

文章介绍了三角函数积分的一些常见方法,包括积化和差公式、恒等变换的应用,以及如何利用立方和公式、二倍角公式降次。在处理复杂积分问题时,文章强调了具体题目具体分析的重要性,展示了如何通过三角恒等变形和有理函数的裂项技巧来简化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4af790954205452288628717d5e3f34e.jpg

e8730dca096446c79543ac90508636b7.jpg 

 积化和差,可以直接凑。想一下什么展开会有sin ×sin,cos(x+y)和cos(x-y)可以!

所以cos(2x+3x)和cos(2x-3x),为了消去cos这一项,所以这两项相减。

过程:

f4684fd03b684177b1e7c9a6c1dfa3bc.jpg

 类题1

957deacca60a491dadef86893dff5cea.jpg

类题2

a965fe1443e849bbb934966ea54bdddd.jpg 

 

 



三角函数不定积分常用方法及相应类题差不多都已经补充完了。下面👇来展现几道还不错的例题。

例题(1)

58ba7fe44c6e4c68aee304bf07e82139.jpg

 之前已经总结了,主要利用三角函数的恒等变换。

类题

eb242a920a53425b861440307045faf9.jpg

 例题(2)

fc227ed815054cc0abbbbe5890d338ae.jpg

 看到这道题,首先的反应是分母的次数高,要降次。

对于一般四次方,是不会因式分解的,但是sin⁴x和cos⁴x是比较特殊。

可以把sin⁴x+cos⁴x写成(sin²x+cos²x)²-2sin²xcos²x

c809b0c1ad454a67a74cdf88df3f88e9.jpg

 这时,分母的次数还是四次,可以利用二倍角公式降次。

 

fd243c09cdc94dd7aef08e42cf0b8197.jpg

这时,观察,可以将sin2x和d2x凑成-dcos2x

完整过程如下

3e10f2abc80f4159a4c41704e91f5d2b.jpg

 例题(3)

0ff04100b90546c0b2d9a5b9ccaee839.jpg

 分母为6次,联想到立方和公式(我是第一次没想到这么处理)

下是完整过程(+批注)

6b4b4bce3f494ef79d5dc9e115ecd7d4.jpg

例题(4)

d067b1f9200c4939ada5b4931eaeda4e.jpg

 如上题目,利用立方和公式展开。

做到上面👆这一步,这时,观察到分子形式简单,只是分母形式较为繁琐,联想到有理函数。如果能够裂项就好了……

有理函数有固定的裂项方法,但是三角函数呢,好像不太……

但是可以具体题目具体分析,利用三角函数的恒等变形而具体分析

这道题目,首先观察到分子为“1”,分母为sinx+cos,又有sinxcosx,所以不难想到(sinx+cosx)²=1+2sinxcosx

裂项一定是将分子用分母两项进行表示。分子是常数,即要寻找(sinx+cosx)²与1-sincosx之间的系数关系。

339e67fe66434bc58e7e93e5988fcb0f.jpg

将分子上的“1”替换,原式变为:

5970fd4ad5e041e992f8dc3e3c7e2b1a.jpg

 观察到,第二项不定积分很容易求得。

即:

29efbbb86b3640e8991661908405c2d7.jpg

 所以,现在要主要解决第一部分的不定积分

✨✨✨✨✨✨(我刚开始并没有想到怎么解决)

ec2aa4051c2748cd8ea64b851a6cc3b9.jpg

 将分子上的sinx+cosx凑到d后面,然后根据三角恒等变形,变换分子下的sinxcosx。

所以,最终

2707b611401d4c6a996fe9940d0d06a8.jpg

 

 

 

 

 

 

 

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

釉色清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值