《概率论与数理统计》第一章总结

 一、随机事件及其运算

1.现象可以分为两类:一类为一定条件下必然发生或绝不可能发生,为确定性现象另一类为条件不能完全决定结果,结果具有偶然性,为随机现象

2.统计规律性:大量同类随机现象所呈现出来的某种规律性。

3.随机试验的三个特征:1)可重复性;2)结果不唯一性;3)不确定性。

4.试验的表示:试验一般使用E来表示,E中的每一个可能的结果称为基本事件样本点,所有基本事件(样本点)组成的集合称为试验E样本空间,记作\Omega。样本空间\Omega应根据随机试验的内容来确定。

5.在随机试验E的样本空间\Omega中,具有某种性质的样本点组成的集合称为试验E随机事件,简称为事件。任何事件都是样本空间\Omega的子集。事件A发生当且仅当A包含的某一个样本点出现。

6.极端事件:一是样本空间\Omega的所有样本点组成的事件,称为必然事件。另一种是不包含任何样本点组成的事件,称为不可能事件。理论上,极端事件不具备随机性,但为了讨论方便,还是把极端事件作为随机事件的特殊情况处理。

7.事件之间的关系

        1)包含关系:若事件A发生,事件B必发生,则称事件B包含事件A或者事件A包含于事件B中,记为B\supsetA或A\subsetB。若B\supsetA且A\supsetB,则A=B。对于任何事件A,\Omega\supsetA\supset\varnothing

        2)事件的并:事件A与事件B至少有一个发生,这样的事件称为事件A与事件B的并事件,记为A\cupB。

        3)事件的交:事件A与事件B同时发生的事件称为事件A和事件B的交事件。记为 AB 或 A\capB。

        4)事件的差:事件A发生而事件B不发生,构成的事件称为事件A与事件B的差事件,记为A—-B。

        5)互斥事件:在一次试验E中若事件A与事件B不能同时发生,即AB=\varnothing,则称A与B为互斥事件(或互不相容事件)。如果对于n个事件,它们之间两两互不相容,则称这n个事件是互不相容的。

        6)对立事件:在一次试验E中事件A与事件B中必然有一个发生且另一个不发生,则称A与B为对立事件(互逆事件)。若A与B对立,则A与B互不相容;反之,则无法判断。

8.如果一个集合与正整数集合之间一一对应,则称这个集合为可列集合(或可数集合),可列集合元素的个数称为可列个

9.运算律1)交换律        A\cupB=B\cupA        A\capB=B\capA

                2)结合律        (A\cupB)\cupC=A\cup(B\cupC)        (A\capB)\capC=A\cap(B\capC)

                3)分配律        A\cap(B\cupC)=(A\capB)\cup(A\capC)        A\cup(B\capC)=(A\cupB)\cap(A\cupC)

                4)德摩根定律        \overline{A\cap B}=\overline{A}\cup \overline{B}        \overline{A\cup B}=\overline{A}\cap \overline{B}

                5)积化差        A\overline{B}=A-B

二、古典概型与集合概型

1.概率:是一种用来刻画事件的可能性大小的数值,是一种不随人的意志变化的客观属性量度。它符合常情,当事件发生的可能性大时,概率就大。

2.频率:在相同的条件下,进行了n次试验,在这n次试验中事件A出现了m次,则称f_{n}\left ( A \right )=\frac{m}{n}为随机事件A在n次试验中出现的频率,m称为频数。

3.频率性质0\leqslant f_{n}\left ( A \right )\leqslant 1        f_{n}\left ( \Omega \right )=1        

                若A_{1},A_{2},...,A_{n}是两两互不相容的事件,那么

f_{n}\left ( A_{1}+ A_{2}+ ...+A_{n}\right )=f_{n}\left ( A_{1}\right )+f_{n}\left ( A_{2}\right )+...+f_{n}\left ( A_{n}\right )

4.频率的稳定性:当试验的次数很大时,频率总是稳定于某一个常数(概率)附近。

5.概率的统计定义:在大量重复试验中,若事件A发生的频率稳定地在某一常数p的附近摆动,则称该常数p为事件A发生的概率,并记事件A的概率为P(A),即P(A)=p。频率是变动的,而概率是常数。我们生活中的产品合格率、彩票中奖率、药物治疗有效率都是指频率。

6.古典概型:1)试验的样本空间中的样本点只有有限个,即基本事件的总数有限(有限性);

                     2)在每次试验中,每个基本事件发生的可能性相等(等可能性)。

7.概率的古典定义:设试验结果共有n个基本事件,而且这些事件发生的可能性相等。事件A由其中的m个基本事件组成,则事件A的概率为

P\left ( A \right )=\frac{m}{n}

在解决古典概型问题时,需要对样本空间随机事件使用相同的计数模式。

8.几何概型:如果试验E的可能结果可以几何地表示为某区域\Omega中的一个点(区域\Omega可以是一维的、二维的、三维的……),并且点落在\Omega中某区域A的概率与A的测度(长度、面积、体积等)成正比,而与A的位置及形状无关,则随机点落在区域A的概率为

P\left ( A \right )=\frac{mA}{m\Omega }

mA为A的测度,m\Omega\Omega的测度,称为几何概率

9.蒙特卡洛算法:也叫做随机模拟法,即利用计算机来模拟所设计的随机试验。

三、概率的公理化定义及其性质

1.主观概率:一个事件的概率是人们根据经验对该事件发生的可能性所给出的个人信念。

2.事件域:也称\sigma\sigma代数,在定义上需要满足3条规定:把全体事件构成的集合记为F,

                1)\Omega\inF;2)若A\inF,则\overline{A}\inF;

                3)若A_{n}\in F,n=1,2,3……,则\bigcup_{n=1}^{\infty }A_{n}\in F

                一维博雷尔\sigma:在实数集合R中,由一切形如[a,b)的有界左闭右开的开区间构成的集类所产生的\sigma域称为一维博雷尔\sigma域。这个域包含一切开区间、闭区间、单个实数、可列个实数以及它们经过可列次交逆并运算得到的集合。

3.概率的公理化定义:假设\Omega是一个样本空间,F是\Omega上的一个事件域,若对于F中的任何一个事件A,都有一实数P(A)与之对应,并且满足三条公理:

                        1)非负性:对于任何一个事件A,P(A)\geqslant0;

                        2)规范性:P(\Omega)\geqslant 0;

                        3)可列可加性:对于两两互不相容的可列个事件A_{1},A_{2},...,A_{n},有

P(\sum_{k=1}^{\infty }A_{k})=\sum_{k=1}^{\infty }P (A_{k})

那么称P(A)为事件A的概率。

4.性质:  1)P(\varnothing )=0;

                2)有限可加性:若事件A_{1},A_{2},...,A_{n}两两互不相容,则

P(A_{1}+A_{2}+...+A_{n})=P(A_{1})+P(A_{2})+...+P(A_{n})

                3)可减性:如果B\supset A,则P(B-A)=P(B)-P(A)

                4)单调性:如果B\supset A,则P(B)\geqslant P(A)

                5)P(\overline{A})=1-P(A)

                6)加法公式        P(A\cup B)=P(A)+P(B)-P(AB)

                7)下连续性  若A_{1}\subset A_{2}\subset ...\subset A_{n}\subset ...,则P(\bigcup_{i=1}^{\infty }A_{i})=\lim_{n\rightarrow +\infty }P(A_{n})

                8)上连续性  若A_{1}\supset A_{2}\supset ...\supset A_{n}\supset ...,则P(\bigcap_{i=1}^{\infty }A)=\lim_{n\rightarrow +\infty }P(A_{n})

5.称三元总体\left ( \Omega ,F,P \right )概率空间

四、条件概率与事件独立性

1.\left ( \Omega ,F,P \right )是一个概率空间,A\in F,而且P(A)>0,则对任意B\in F,记

P(B|A)=\frac{P(AB)}{P(A)}

                称P(B|A)为在事件A发生的前提下,事件B发生的条件概率

2.乘法公式:根据条件概率的定义,可以得到P(AB)=P(A)P(B|A)

3.事件独立性:设A和B是概率空间\left ( \Omega ,F,P \right )中的两个事件,如果有

P(AB)=P(A)P(B)

则称事件A与事件B相互独立,简称独立。否则称A与B不独立相依

4.若事件A与事件B相互独立,则事件\overline{A}与B,A与\overline{B}\overline{A}\overline{B}也相互独立。

5.设A,B,C是概率空间\left ( \Omega ,F,P \right )中的三个事件,如果有

        P(AB)=P(A)P(B)

        P(AC)=P(A)P(C)

        P(BC)=P(B)P(C)

        则称A,B,C两两独立。若还有

        P(ABC)=P(A)P(B)P(C)

        则称A,B,C相互独立。

6.独立事件序列:设有事件序列A_{1},A_{2},...,A_{n},...如果其中任意有限个事件仍是相互独立的,那么称这个事件序列是相互独立的,并称这个序列为独立事件序列

五、全概率公式与贝叶斯公式

1.A_{1},A_{2},...,A_{n}是概率空间\left ( \Omega ,F,P \right )中的一组事件,若它们两两互不相容,而且

\sum_{k=1}^{n}A_{k}=\Omega

则称A_{1},A_{2},...,A_{n}是样本空间\Omega的一个分割,亦称完备事件组

2.\left ( \Omega ,F,P \right )是概率空间,A_{1},A_{2},...,A_{n}是样本空间\Omega的一个分割,如果

        P(A_{k})> 0,k=1,2,...,n,则对任意B\in F,有

P(B)=\sum_{k=1}^{n}P(A_{k})P(B|A_{k})

        事件B发生的概率(无条件概率)是各个A下的条件概率的加权平均。

        利用全概率公式求解的关键是对样本空间进行恰当地分割。

3.贝叶斯公式:\left ( \Omega ,F,P \right )是概率空间,A_{1},A_{2},...,A_{n}是样本空间\Omega的一个分割,则对任意

B\in FP(B)> 0,有

P(A_{k}|B)=\frac{P(A_{k})P(B|A_{k})}{\sum_{j=1}^{n}P(A_{j})P(B|A_{j})},k=1,2,...,n

4.假设某个过程具有A_{1},A_{2},...,A_{n}这样n个可能的前提(原因),而P(A_{1}),P(A_{2}),...,P(A_{n})是人们对这n个可能的前提的可能性大小的一种事前估计,称为先验概率。当过程有了结果B时,就会通过条件概率来重新认识,称之为后验概率。这种理论最终形成了一个贝叶斯学派

六、伯努利概型

1.设有两个试验E_{1}E_{2},假如试验E_{1}的任一结果与试验E_{2}的任一结果都相互独立,则称这两个试验相互独立

2.如果有n个试验,而这n个试验的任一结果都是相互独立的n个事件,则称这几个试验相互独立。如果这n个独立试验还是相同的,则称其为n重独立重复实验

3.如果试验E的可能结果为两个:A\overline{A},则称试验E为伯努利试验。若将E重复进行n次,且这n次试验相互独立,则称为n重伯努利试验

4.设每次试验中,事件A发生的概率为p(0<p<1),则在n重伯努利试验中,事件A发生k次的概率为

P_{n}(k)=C_{n}^{k}p^{k}q^{n-k},q=1-p

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值