💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
格拉姆变换与并行网络CNN-BiLSTM故障诊断研究
一、格拉姆变换的原理与信号编码
格拉姆变换(Gramian Angular Field, GAF)是一种将一维时序信号映射为二维图像的方法,通过极坐标系转换和格拉姆矩阵生成,有效保留时序依赖关系。其核心步骤包括:
-
信号归一化:将原始信号缩放到[0,1]区间,避免特征偏向极值。公式为:
-
极坐标映射:将归一化后的信号转换为极坐标系,生成角度和半径:
其中,φi表示角度,ri为时间步的归一化半径。
-
格拉姆矩阵生成:
这两种方法生成的矩阵能够反映时序信号的时间相关性。
优势:相比短时傅里叶变换(STFT)和连续小波变换(CWT),格拉姆变换计算复杂度低,且能保留时间序列的全局结构。
二、CNN-BiLSTM网络结构与并行化设计
并行网络CNN-BiLSTM结合了卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM),实现空间特征与时序特征的联合提取:
-
CNN模块:
- 通过卷积层提取局部空间特征(如边缘、纹理),池化层压缩数据维度。
- 常用结构包括多层卷积+批归一化(BatchNorm)+激活函数(如ReLU)。
-
BiLSTM模块:
- 双向LSTM同时处理正向和反向时间序列,捕捉长程依赖关系。公式表达为:
- 双向LSTM同时处理正向和反向时间序列,捕捉长程依赖关系。公式表达为:
- 并行化架构设计:
- 双通道输入:例如,将GASF和GADF图像分别输入两个独立的CNN分支,提取不同模态特征后融合。
- 特征融合策略:通过拼接、加权平均或注意力机制整合多源特征,增强信息表达能力。
- 优化技术:引入注意力机制(Attention)筛选关键特征,或采用Dropout/DropConnect抑制过拟合。
三、格拉姆变换与CNN-BiLSTM的协同应用
-
故障诊断流程:
- 数据预处理:原始振动/电流信号→格拉姆变换生成GASF/GADF图像。
- 特征提取:并行CNN处理图像特征,BiLSTM挖掘时序依赖。
- 分类决策:Softmax或支持向量机(SVM)输出故障类别。
-
典型应用案例:
- 行星齿轮箱故障诊断:GADF-CNN-BiLSTM模型在CWRU数据集上达到98.4%准确率,优于单一CNN或GASF方法。
- 船舶柴油机故障检测:融合GASF/GADF图像和多注意力机制,平均诊断精度提升14.8%。
- 滚动轴承变工况诊断:引入注意力机制的CNN-BiLSTM在噪声环境下保持85%以上准确率。
-
性能优势:
- 高精度:在CWRU、CMAPSS等数据集上,准确率普遍超过95%。
- 抗噪性:CNN的局部感受野和BiLSTM的时序建模能力,使模型在20dB噪声下仍保持90%以上分类能力。
- 计算效率:并行结构缩短训练时间,例如电/热负荷联合预测耗时仅为单模型的一半。
四、挑战与未来方向
-
现存问题:
- 数据依赖性强:深度学习模型需大量标注数据,而工业场景中故障样本稀缺。
- 参数调优复杂:网络层数、学习率等超参数需经验性调整,影响模型泛化能力。
- 可解释性不足:模型决策过程仍为“黑箱”,难以满足高安全需求场景。
-
改进方向:
- 多模态融合:结合格拉姆变换与其他时频分析(如CWT),或引入物理模型辅助诊断。
- 小样本学习:采用迁移学习或生成对抗网络(GAN)扩充故障数据。
- 可解释性增强:通过Grad-CAM++可视化特征重要性,或引入因果推理机制。
五、总结
格拉姆变换与并行CNN-BiLSTM的结合,通过将一维信号编码为二维图像并联合提取时空特征,显著提升了故障诊断的精度和鲁棒性。未来研究需进一步优化模型效率、增强可解释性,并探索在更复杂工业场景(如多传感器融合、在线监测)中的应用潜力。
📚2 运行结果
格拉姆矩阵图像:
部分代码:
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.001, ... % 初始学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
'L2Regularization', 0.001, ... % 正则化参数
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 1, ... % 关闭优化过程
'Plots', 'none'); % 画出曲线
% % start training
t0 = tic; %开始计时
net = trainNetwork(trainD,train_Y, layers0,options0 );
toc(t0); % 从t0开始到此处的执行时间
%% Accuracy assessment
pred = classify(net, testD);
pred = pred';
accuracy=sum(test_Y==pred)/length(pred); %计算预测的确率
% 标准bilstm作图
% 画方框图
figure
confMat = confusionmat(test_Y,pred); %test_Y是真实值标签
zjyanseplotConfMat(confMat.');
xlabel('Predicted label')
ylabel('Real label')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
% 作图
figure
scatter(1:length(pred),pred,'r^')
hold on
scatter(1:length(pred),test_Y,'b*')
legend('预测类别','真实类别','NorthWest')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李宗源,陈谦,钱倍奇,等.基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断[J].电力自动化设备, 2024, 44(8):153-159.
[2]张国栋,尹 强,羊 柳.基于格拉姆角场和 PSO-CNN 的滚动轴承 故障诊断方法[J].Journal of Ordnance Equipment Engineering, 2024, 45(4).
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取