【切负荷】计及切负荷和直流潮流(DC-OPF)风-火-储经济调度模型研究【IEEE24节点】(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、切负荷(Load Shedding)的核心机制与优化

二、直流潮流(DC-OPF)的建模优势与限制

三、IEEE24节点系统的拓扑特性与参数设置

四、风-火-储联合经济调度的关键技术

五、协同优化框架与典型研究流程

六、未来研究方向

📚2 运行结果

2.1 算例

 2.2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文章


💥1 概述

【切负荷】计及切负荷和直流潮流(DC-OPF)风-火-储经济调度模型研究【IEEE24节点】


一、切负荷(Load Shedding)的核心机制与优化

  1. 定义与作用
    切负荷是电力系统在供电不足时切除部分非关键负荷以维持稳定的重要手段。其核心目标是防止频率崩溃、缩小事故范围,并优先保障关键设备供电。

    • 精准化趋势:传统切负荷采用“一刀切”方式,而现代技术通过分级控制(如空调、照明等低优先级负荷)实现精细化切除,减少用户影响。
    • 协同控制:需结合闭锁重合闸、备用电源禁用等措施,避免负荷重新投入。
  2. 数学模型中的处理
    在优化模型中,切负荷通常作为惩罚项加入目标函数,例如:

    其中 Cshed 为切负荷惩罚成本,Pshed​ 为切除负荷量。

    • 分级策略:根据负荷重要性划分等级,优先切除低等级负荷。
    • 区域划分:通过电网分区(如电压调节能力划分)降低控制代价。

二、直流潮流(DC-OPF)的建模优势与限制

  1. 基本原理
    DC-OPF将交流网络简化为线性模型,忽略无功功率和电压幅值变化,仅考虑有功功率平衡与线路传输极限。其核心方程包括:

  2. 应用场景与局限性

    • 优势:计算效率高,适合大规模系统实时优化。
    • 缺陷:无法精确处理无功、电压问题,可能导致解不可行。
    • 改进方向:结合混合整数规划(MIP)或凸松弛技术处理非凸性。

三、IEEE24节点系统的拓扑特性与参数设置

  1. 结构特征

    • 节点类型:包含火电(G)、水电(H)及负荷节点,线路分230kV和138kV电压等级。

       

    • 扩展性设计:拟建线路(虚线)为电网规划提供灵活性。

    • 典型参数:年度峰值负荷2850MW,34条线路,火电机组出力范围500-3195MW。
  2. 风-火-储配置

    • 风电接入:节点21、22、23各配置500MW风电场。
    • 储能约束:充放电效率、荷电状态(SOC)限制及容量衰减成本。

四、风-火-储联合经济调度的关键技术

  1. 目标函数
    最小化总成本,涵盖火电燃料成本、切负荷惩罚、弃风成本和储能损耗:

    其中储能成本包括充放电损耗和寿命衰减。

  2. 约束条件

    • 功率平衡:风-火-储出力需匹配负荷需求与切负荷量。
    • 火电爬坡:考虑启停时间与出力速率限制。
    • 储能动态:SOC连续性约束及充放电功率上下限。
    • 线路容量:基于DC-OPF的传输极限约束。
  3. 不确定性处理

    • 鲁棒优化:构建风电预测误差不确定集,通过两阶段(日前-日内)模型动态调整。
    • 机会约束:利用随机规划量化风险,确保调度方案在置信水平内可行。

五、协同优化框架与典型研究流程

  1. 整体架构

    • 输入层:风电预测数据、负荷需求、设备参数。
    • 优化层:DC-OPF模型嵌入切负荷策略,求解经济调度方案。
    • 控制层:执行切负荷指令及储能充放电计划。
  2. 算法选择

    • 数学规划:Gurobi、CPLEX求解混合整数线性规划(MILP)。
    • 智能算法:粒子群优化(PSO)处理非凸问题。
    • 机器学习:神经网络预测最优调度,结合可行性层确保约束满足。
  3. 案例分析(IEEE24节点)

    • 场景设置:模拟风电波动(±30%预测误差)、负荷突变等极端情况。
    • 结果指标:总成本、弃风率、切负荷量、线路利用率。
    • 优化效果:相比传统调度,联合模型可降低总成本10%-15%,减少切负荷量20%以上。

六、未来研究方向

  1. 动态切负荷策略:结合实时频率与电压偏差触发分级切除。
  2. 高比例可再生能源:研究风光储多能互补与火电深度调峰的协同机制。
  3. 分布式优化:基于边缘计算实现区域自治与全局协调。
  4. 碳约束模型:引入碳交易成本,平衡经济性与低碳目标。

 详细数学模型及文档讲解见第4部分。

📚2 运行结果

2.1 算例

IEEE24节点​

 2.2 运行结果

 

 

​ 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]常延朝. 数据驱动的受端电网紧急切负荷优化研究[D].山东大学,2022.DOI:10.27272/d.cnki.gshdu.2022.002454.

[2]郭永明,李仲昌,尤小虎,刘观起,郑洁.计及备用容量优化配置的风火联合随机经济调度模型[J].电力系统保护与控制,2016,44(24):31-36.

[3]王思宇. 基于改进鱼群算法的多目标风火联合环境经济调度研究[D].沈阳农业大学,2022.DOI:10.27327/d.cnki.gshnu.2022.000687.

[4] 赵晋泉,叶君玲,邓勇. 直流潮流与交流潮流的对比分析[J]. 电网技术,2012,36(10):147-152.

[5] 张伯明.陈寿孙.严正.高等电力网络分析[M].北京:清华大学出版社,2007.

[6] A. Soroudi, Power System Optimization Modeling in GAMS. 2017. DOI: 10.1007/978-3-319-62350-4.

🌈4 Python代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值