大学生0门槛期末快速上手R语言速通指南(二):快速上手画图操作

前言:

本系列文章基于《R语言实战》(第2版),建议期末之后的同学尽量阅读原书。有任何不懂的问题请下载copyask一键复制查询。

  • barplot函数

  1. 简单的条形图

在上一节中,我们讨论了包的使用。这节中我们先导入一个包:

library(vcd)

在这个包中包含了Arthritis(关节炎)数据集(可以通过View(Arthritis)来查看此数据集,或者直接输入Arthritis来查看),通过使用$符号我们可以调用该数据集中的任意子数据或子数据集:

counts <- table(Arthritis$Improved)

接下来我们使用barplot函数:

Barplot(counts, main = “简单条形图", xlab = "提升效果", ylab = "频数")

 

而在函数后面加上horiz = T(这里T等价于TRUE)则可以使得条形图水平过来。

 

  1. 堆砌条形图和分组条形图

如果我们想要考虑两个数据集的列联表的条形图,我们在后面添加beside = T/F的函数。

比如我们想要将Arthritis中的Improved与Treatment联立。在这张数据集中,每位病人只使用了两种疗效Treated与Placebo,我们想观察这两种疗法的具体治疗效果,首先我们先将两份数据放入一个表中:

counts <- table(Arthritis$Improved, Arthritis$Treatment)

接下来,我们来看它的堆砌条形图:

barplot(counts, main = "堆砌条形图", xlab = "疗法", ylab = "频数",

        col = c("red", "yellow", "green"), legend = rownames(counts))

 

这时的beside默认为F. 我们将beside设置为T

barplot(counts, main = "分组条形图", xlab = "疗法", ylab = "频数",

        col = c("red", "yellow", "green"), legend = rownames(counts), beside = T)

 

思考:谁的疗效更好?

作业:请你试着探究治愈效果与性别的关系

  1. 均值条形图

均值条形图只是其中的一种,我们通过掌握均值条形图就能够同理掌握中位数、标准差等的条形图。接下来我们用美国四大区域的(东北、南部、中央、西部)文盲率举例。

首先我们先将数据封装起来(同上,感兴趣的小伙伴可使用View自行查看):

states <- data.frame(state.region, state.x77)

接下来我们根据每个州的地域,函数选择平均值,来选择出每个州的文盲率:

means <- aggregate(states$Illiteracy, by = list(state.region), FUN = mean)

使用order函数将选择出的平均值进行排序,具体用法可使用help(order)进行查看:

means <- means[order(means$x),]

接下来我们使用barplot函数,并在后面加上names.arg来为该函数命名:

barplot(means$x, names.arg = means$Group.1)

加上标题:

title("平均文盲率")

 

目前为止,我们介绍了常用的条形图的使用方法,足以应对期末考试。如果想要知道更多功能强大的条形图绘制,请下载copyask进行询问。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值