巴西电商Olist store订单数据分析及可视化—Mysql&Tableau

一、项目背景

Olist store是巴西市场上的一家的百货公司,Olist 通过单一合同轻松将巴西各地的小企业连接到频道。这些商家能够通过 Olist Store 销售他们的产品,并使用 Olist 物流合作伙伴将其直接运送给客户。

数据来源:Brazilian E-Commerce Public Dataset by Olist

数据介绍:该数据集由Olist store公司所提供,里面包含 2016 年至 2018 年在巴西多个市场下达的十万多个订单的信息。其功能允许从多个维度查看订单:从订单状态、价格、付款和货运绩效到客户位置、产品属性,最后是客户撰写的评论。该数据集中的9个子集之间的关系如下:


二、数据字段的含义

序号表名字段名&字段名含义
1olist_customers_datasetcustomer id (用户id)
【客户信息表】

customer_unique_id 

(客户唯一标识符)

customer_zip_code_prefix

(客户邮编前5位数)

customer_city

(客户所在的城市)

customer_state

(客户所在的州)

customer_state

(客户所在的州)

2olist_geolocation_datasetgeolocation_zip_code_prefix(地址邮编前5位)
【地区信息表】

geolocation_lat(地区维度)

geolocation_lng(地区经度)

geolocation_city(地区城市)

geolocation_state

(地区所在的州)

3olist_order_items_datasetorder_id(订单id)
【订单详细数据表】

order_item_id

(序号,标识同一订单中的商品数量)

product_id(产品id)
seller_id(卖家id)
shipping_limit_date
(卖家处理订单配送的限制日期)
price(订单商品价格)
freight_value(订单运费)
4olist_order_payments_datasetorder_id(订单id)
【订单付款详情表】payment_sequential
(用户支付订单用了几种方式)
payment_type(支付手段)
payment_installments
(分期付款数量)
payment_value
(交易价格)
5olist_order_reviews_datasetreview_id(评论id)
【订单评论数据表】order_id(订单id)
review_score(客户订单评分)
review_comment_title
(评论标题)
review_comment_message
(评论内容)
review_creation_date
(发送邀评给客户的日期)
review_answer_timestamp
(客户填写评论的时间截点)
6olist_orders_datasetorder_id(订单id)
【订单配送情况】customer_id(客户id)
order_status(订单配送状态)
order_purchase_timestamp
(订单付款的时间点)
order_approved_at
(订单付款审批的时间点)
order_delivered_carrier_date
(显示订单发布给物流时间点)

order_delivered_customer_date
(向客户显示实际的订单交付日期)

order_estimated_delivery_date
(通知客户的估计交货日期)
7olist_products_datasetproduct_id(产品id)
【产品详情表】product_category_name
(产品类别名-葡萄牙语)
product_name_lenght
(产品名称字符串长度)
product_description_lenght
(产品描述的字符串长度)
product_photos_qty
(产品照片数量)
product_weight_g
(产品重量-克)
product_length_cm
(产品长度-厘米)
product_height_cm
(产品高度-厘米)
product_width_cm
(产品宽度-厘米)
8olist_sellers_datasetseller_id(卖家id)
【卖家数据表】seller_zip_code_prefix
(卖家邮编前5位)
seller_city(卖家所在城市)
seller_state(卖家所在州)
9product_category_name_translationproduct_category_name
(产品名称-葡萄牙语)
【产品种类名称翻译表】product_category_name_english
(产品名称-英语)

上述表格中,标记为红色的代表为其表明的主键

其中有两个字段需要额外进行说明

  • order_status:订单状态
    1.approved:已批准
    2.canceled:已取消
    3.created:已创建
    4.delivered:已交付
    5.invoiced:已开票
    6.processing:处理中
    7.shipped:已发货
    8.unavailable:不可用
  • payment_type:付款方式
    1.boleto 巴西的一种主要的支付方式,类似支票
    2.credit_card 信用卡
    3.debit_card 借记卡
    4.not_defined 未定义
    5.voucher 代金券/收据

其中order_status中,这里我们以delivered为一笔订单彻底完成的标志。


三、分析工具以及分析思路,框架

工具:1.Datagrip (Version: 2024.3.5)2.Tableaub (Version:2024.3) 3.Excel

分析思路:

1、基础数据的探索与清洗

数据完整性检查,是否有空值,异常值,进行检查后对其进行处理,确保数据的准确性。

2、运营指标分析

总GMV,州GMV,ARPU值分析,平均订单价,每日订单数量,交付完成率等。根据这些信息以及所绘制的可视化图表对其运营情况进行初步的判断,并分析其原因。

3、客户行为分析

DAU指标,MAU指标,客户分布与复购率,新老可占比,用户支付方式占比,用户下单时间分布,RFM用户价值指标分析,对客户进行分类,并判断公司的发展是否具有潜力等。根据这些分析所得的指标对于该公司的客流量情况以及其他各相关指标进行初步的判断

4、商品指标分析

品类的畅销TOP排名,品类销售额度TOP排名,商品的畅销TOP排名,商品销售额度TOP排名,商品页面内容分析等。


四、数据预处理

4.1 数据导入及数据类型的转换

此处我用的是在阿里云免费试用的线上数据库,通过Datagrip对其线上数据库连接,随后在Datagrip将数据集导入至线上的服务器中。

其中有大量的数据默认为text文本类型,此处我们需要进行修改

例如payment_dataset中的payment value显示为text,我们需要将其修改为double类型,所有数据修改完成后如下图所示:

4.2空值处理

1、order_review_dataset(评论表)

通过数据集我们可以观察到,空值出现最多的表格便是order_review_dataset中的comment_title,comment_message,此处我们均用0对其进行代替。

UPDATE olist_order_reviews_dataset
SET review_comment_title=0
where review_comment_title is null;
 
UPDATE olist_order_reviews_dataset
SET review_comment_message=0
WHERE review_comment_message is NULL;

2、order_dataset(订单表)

对于order_dataset中,此处我们以order_approved_at(订单付款审批的时间点)作为一个订单成功下单的标志,因此我们需要检查出order_dataset中所有order_approved_at为null的值,此处我们进行删除处理,而不用0值代替。

DELETE FROM olist_orders_dataset
WHERE order_approved_atIS NULL;
-- 通过此操作可以删除160行左右的未审核到有支付的数据

3、product_dataset(商品表)

将所有为null的商品类别标记为uncategorized,同时将所有为null的商品参数值调为0

UPDATE olist_products_dataset
SET 
    product_category_name = COALESCE(product_category_name, 'uncategorized'),--将所有为null的商品类别,改为uncategorized
    product_weight_g = COALESCE(product_weight_g, 0), 
    product_length_cm = COALESCE(product_length_cm, 0),
    product_height_cm = COALESCE(product_height_cm, 0),
    product_width_cm = COALESCE(product_width_cm, 0);-- 将所有未知量标记为0

4、olist_order_payments_dataset(支付表)

删除表中所有支付金额为0或null,以及支付方式为null的值(即删除所有无效订单)

DELETE FROM olist_order_payments_dataset
WHERE payment_value IS NULL OR payment_type IS NULL;

4.3异常值的处理

此处仅处理物流时间停滞时间较长的物件,设置物流超过60天或负数的值为异常值。此处用Abnormal_order来存储所有异常的订单数据,总计298项目。

-- 计算物流运送的时长
ALTER TABLE olist_orders_dataset
ADD COLUMN delivery_days INT;
UPDATE olist_orders_dataset
SET delivery_days = DATEDIFF(
    order_delivered_customer_date,
    order_purchase_timestamp
);
-- 创建一个新表用来记录异常物流时长(超过60天或负值)
CREATE TABLE Abnormal_order AS
SELECT *
FROM olist_orders_dataset
WHERE
    delivery_days < 0
    OR delivery_days > 60;

-- 修正负值为NULL(数据不可信)
UPDATE olist_orders_dataset
SET delivery_days = NULL
WHERE delivery_days < 0;

五、数据分析及其可视化

5.1运营指标分析与可视化

5.1.1每日GMV与各大州总GMV分析

-- 每日GMV
SELECT
    DATE_FORMAT(od.order_approved_at,'%Y-%m-%d') datetime,-- 日期
    ROUND(SUM(payment_value),2) GMV -- 总GMV
FROM olist_order_payments_dataset py
    JOIN olist_orders_dataset od ON py.order_id = od.order_id
WHERE od.order_status = 'delivered'
GROUP BY datetime
ORDER BY datetime   -- 按日期的升序排序

-- 按州统计总GMV
SELECT
    c.customer_state  state,          -- 客户所在州
    ROUND(SUM(py.payment_value), 2)  GMV  -- 总GMV(保留两位小数)
FROM olist_orders_dataset o
    JOIN olist_customers_dataset c ON o.customer_id = c.customer_id -- 关联订单与客户表
    JOIN olist_order_payments_dataset py ON o.order_id = py.order_id  -- 关联订单与支付表
WHERE o.order_status = 'delivered'
GROUP BY c.customer_state
ORDER BY GMV DESC;-- 按GMV降序排序

Tableau可视化后如图所示

从以上数据我们可以看到SP州,也就是圣保罗州是销售额贡献最高的城市,这是因为圣保罗州拥有整个巴西最大的城市圣保罗,这里的常住人口也是整个巴西最多的,因此圣保罗州的消费力稳居第一,对此该公司可加强与圣保罗州物流的合作,以此更加方便的处理圣保罗州大幅的订单。

从总GMV我们可以看到在2017年11月24日,2018年的4月24日出现了大幅的上涨,经过调查2017年11月24日的突然上涨是因为当天是巴西的购物节日黑色星期五,而2018年的4月24日的上涨则可能是因为免费送货日的促销,可以看出来他们在节假日的促销活动做的还是相当不错的,GMV在月内整体会有小幅的波动,从2017年后开始逐步稳定在日销售额度40000左右。

5.1.2订单平均价格与月订单数量分析

-- 查看订单均价
SELECT
    ROUND(AVG(payment_value),2) AS '订单均价' -- 保留两位小数
FROM olist_order_payments_dataset py
    JOIN olist_orders_dataset od ON py.order_id = od.order_id
WHERE od.order_status = 'delivered'

-- 月订单数量
SELECT
    DATE_FORMAT(order_approved_at,'%Y年-%m月') AS Datetime,-- 月份
    COUNT(order_id) AS 订单数量
FROM olist_orders_dataset
WHERE order_status = 'delivered'
GROUP BY Datetime

可以看到在11月的时订单数量来到了最高点,随后在2018年订单数量持续高增,呈现出增长的趋势,但是在2018年5月以后开始呈现下滑的趋势。公司可以从产品质量,营销策略等方面寻找问题所在,检查质量是否合格,营销的各类指标是否达标去制定新的策略。

5.1.3 交付完成率分析

-- 查看交付完成率
ALTER TABLE olist_orders_dataset
ADD COLUMN Delivery_completion INT;
-- 设置字段Delivery_completion用于标记订单是否为delivered的状态
-- 若为delivered则标记为1,否则标记为0
UPDATE olist_orders_dataset
SET Delivery_completion = 1
WHERE order_status = 'delivered';
UPDATE olist_orders_dataset
SET Delivery_completion = 0
WHERE order_status != 'delivered';

SELECT
    DATE_FORMAT(order_approved_at,'%Y-%m-%d') AS Datetime,-- 日期
    ROUND(SUM(Delivery_completion)/COUNT(order_id),2) 交付完成率
FROM olist_orders_dataset
GROUP BY Datetime
ORDER BY Datetime;

我们在Tableau中创建如下的字段,即可将每日的交付完成率进行可视化。

可以看出整体的交付完成率都在接近9成,除了17年1月8号出现较大幅度的波动之外,其余时间比较稳定。

5.1.4 ARPU值分析

-- 月ARPU值的计算
SELECT
    DATE_FORMAT(order_approved_at,'%Y年-%m月') AS Datetime,-- 月份
    ROUND(SUM(payment_value)/COUNT(DISTINCT cd.customer_id),2) AS ARPU值
FROM olist_order_payments_dataset pd
    JOIN olist_orders_dataset od ON pd.order_id = od.order_id
    JOIN olist_customers_dataset cd ON cd.customer_id = od.customer_id
WHERE order_status = 'delivered'
GROUP BY Datetime

可以看出ARPU值稳定在160左右,巴西的货币为雷亚尔,换算成人民币在200块钱左右,可以看出Olist store所针对的用户为具有一定消费能力的用户。

5.2客户行为分析

5.2.1 DAU与MAU分析

-- DAU计算
SELECT
    DATE_FORMAT(order_approved_at,'%Y年-%m月-%d日') AS Datetime,-- 日期
    COUNT(DISTINCT customer_id) DAU
FROM olist_orders_dataset
GROUP BY Datetime;

-- MAU计算
SELECT
    DATE_FORMAT(order_approved_at,'%Y年-%m月') AS Datetime,-- 日期
    COUNT(DISTINCT customer_id) DAU
FROM olist_orders_dataset
GROUP BY Datetime;

从Tableau所做的趋势线可以看出来,公司的用户活跃数量在逐月上升,整体呈现上涨的趋势,但在2018年的5月份开始呈现出下滑的趋势。

5.2.2 客户分布

-- 客户分布
SELECT
    customer_state  AS 州,
    COUNT(customer_id) AS 客户量
FROM olist_customers_dataset
GROUP BY customer_state;

用Tableau可视化后可以看到各州的订单占比,以及下单客户的具体分布情况

 可以看到SP州(圣保罗州)为客户最密集的地区,位居第二第三的分别是RJ州(里约州)与MG州(米纳斯州),同时从地图上也可以看出圣保罗州是订单量最密集,且总GMV最高的地区,这与当地的经济发展情况与人口分布基本一致。公司在后续的运营过程中,也可以针对不同的地区出台不同的策略来促销商品。

5.2.3 客户支付手段分析

-- 统计每种支付方式的使用次数及平均支付金额
SELECT
    payment_type AS 支付方式,
    COUNT(order_id) AS 订单总量,
    ROUND(COUNT(order_id)/SUM(COUNT(order_id)) OVER(),2) AS 支付方式占比,
    ROUND(AVG(payment_value),2) AS 平均消费
FROM olist_order_payments_dataset
GROUP BY payment_type
ORDER BY 订单总量 DESC;

用Tableau可视化后可以清晰地看到其分布占比

可以看到信用卡的使用占比高达接近75%,是用户消费中最常用的消费手段,针对信用卡使用频次非常高这一现象,公司可以加强与银行的合作,尝试推出品牌联名信用卡,提供首刷礼、消费返现等专属权益,增强用户粘性。其次还可以让用户使用信用卡支付可获额外积分,用于兑换折扣券或礼品去促进消费。同时鉴于信用卡可以分期付款,可以针对高单价商品(如电子产品、家具),联合银行提供 “0息分期” 选项,降低用户购买门槛。

5.2.4 客户分期付款占比

-- 分期数量于订单数量
SELECT
    payment_installments AS 分期数量,
    COUNT(DISTINCT order_id) AS 订单数量
FROM olist_order_payments_dataset
WHERE payment_type = 'credit_card'
GROUP BY payment_installments;

可以看到客户进行分期付款的比率超过了60%,且约98%的订单均为10期以内,说明该公司比较推崇进行分期付款。

5.2.5 客户下单时间分析

-- 用户订单时间分布
SELECT
    DATE_FORMAT(order_purchase_timestamp,'%H时') AS Hour,-- 小时
    COUNT(order_id) AS 订单数量
FROM olist_orders_dataset
GROUP BY Hour
ORDER BY Hour;

可以看出,客户的下单时间集中在了10到22点,除了睡觉的时间,全天基本都有人在进行网购。可以根据下单的时间来指定营销策略,例如午间大家都需要吃饭,可以给在网购的人进行一些饮食商品的推送,晚上睡前用户普遍消费欲望会高,可以给用户多推送一些穿搭,娱乐产品。同时鉴于3到5点的下单人数最少,对于服务器的维修和检查就可以放在这个时间段以避开用户网购的高峰期。

5.2.7 新老客占比分析

这里定义新老客户所用的方法是,判断用户在两年内平台消费订单超过两笔,若超过2笔则定义为老客户,若仅有1笔则定义为新客户。

从分析结果可以看出老客户仅0.65%,新客户占比高达99.35%,说明平台客户留存率严重不足,客户复购率极低。潜在的问题可能是产品质量,物流体验或者售后服务有令用户不满意的地方,导致老客率非常低。对此公司可以指定相关的引流策略来吸引老客户进行回购,例如进行积分制购物,积分可以兑换礼品,又如根据客户注册时间或生日发送定制化优惠。

5.2.8 RFM用户价值指标分析 

首秀创建数据表存储RFM所对应的各项指标

-- 创建数据表存储rfm的各项指标
CREATE TABLE rfm_base_data AS(
    SELECT
        c.customer_id,
        DATEDIFF('2018-10-17', MAX(o.order_purchase_timestamp)) AS recency_days, -- 最近一次消费
        COUNT(DISTINCT o.order_id) AS frequency, -- 消费频率
        SUM(p.payment_value) AS monetary -- 消费金额
    FROM olist_orders_dataset o
    JOIN olist_customers_dataset c ON o.customer_id = c.customer_id
    JOIN olist_order_payments_dataset p ON o.order_id = p.order_id
    WHERE order_status = 'delivered' -- 仅查看已经完成交付的订单
    GROUP BY c.customer_id)

其次创建数据表存储由RFM模型分类后的客户数据

CREATE TABLE rfm_model_customer_division AS( -- 创建rfm模型分类下的客户表
WITH customer_rfm AS (
    SELECT
        customer_id,
        MIN(recency_days) AS R, -- 统计客户订单中时间间隔最小的数据为R
        MAX(frequency) AS F, -- 统计客户订单中消费频率最高的的数据为F
        MAX(monetary) AS M -- 统计客户订单中消费金额最大的数据为M
    FROM rfm_base_data
    GROUP BY customer_id
),
rfm_score AS (
    SELECT
        customer_id,
        R, F, M,
        -- 用NTILE函数将数据分为五个等级,对于r值选用倒序,f与m值均用升序
        NTILE(5) OVER (ORDER BY R DESC) AS R_score,
        NTILE(5) OVER (ORDER BY F ) AS F_score,
        NTILE(5) OVER (ORDER BY M ) AS M_score
    FROM customer_rfm
)
SELECT
    customer_id,
    R_score, F_score, M_score,
    -- 仅在数据为5时才定义为高,剩下均为低数据
    CASE
        WHEN R_score >= 4 AND F_score >= 4 AND M_score >= 4 THEN '高价值客户'
        WHEN R_score >= 4 AND F_score < 4 AND M_score >= 4 THEN '重点发展客户'
        WHEN R_score < 4 AND F_score >= 4 AND M_score >= 4 THEN '重点保持客户'
        WHEN R_score < 4 AND F_score < 4 AND M_score >= 4 THEN '重点挽留客户'
        WHEN R_score >= 4 AND F_score >= 4 AND M_score < 4 THEN '潜力客户'
        WHEN R_score >= 4 AND F_score < 4 AND M_score < 4 THEN '一般客户'
        WHEN R_score < 4 AND F_score >= 4 AND M_score < 4 THEN '低价值活跃客户'
        ELSE '流失风险客户'
    END AS customer_segment
FROM rfm_score)

随后查询各类用户的数量,以及占比分布

SELECT
    customer_segment AS 顾客类别,
    COUNT(customer_segment) AS 用户数量,
    ROUND(COUNT(customer_segment)/SUM(COUNT(customer_segment)) OVER(),2) AS 所占百分比
FROM rfm_model_customer_division
GROUP BY customer_segment
ORDER BY 用户数量 DESC;

从分析结果来看,客户结构是失衡的,低价值活跃客户、一般客户和流失风险客户占比最高,合计超过总客户的60%。高价值客户和潜力客户占比最低合计约8%,表明平台核心收入依赖中低价值客户,高价值用户池亟待扩充。同时客户流失风险非常严重,其中流失风险客户与重点挽留客户合计高达28%,客户流失压力非常大,需要即使调整相关策略来召回老客。

对于流失压力巨大的问题,可以采取如下措施,对于recency(最近一次购买时间间隔)小于90天的客户,发放一些回归礼包,如满减或者免费的会员升级,同时以短信或者手机推送的方式提醒用户回顾礼包的发送。

5.3 商品指标分析

5.3.1品类销量top与品类销售额top分析

-- 统计销量前十的商品类别
SELECT
    product_category_name_english AS 商品英文名称,
    COUNT(pd.order_id) AS 商品购买次数,
    RANK()OVER(ORDER BY COUNT(pd.order_id) DESC) AS 排名
FROM olist_order_payments_dataset pd JOIN olist_order_items_dataset oid
ON pd.order_id = oid.order_id
JOIN olist_products_dataset op
ON op.product_id = oid.product_id
JOIN product_category_name_translation pcn
ON pcn.product_category_name = op.product_category_name
GROUP BY 商品英文名称
ORDER BY 排名
LIMIT 10;

-- 统计销售额前十的商品类别
SELECT
    product_category_name_english AS 商品英文名称,
    ROUND(SUM(payment_value),2) AS 商品总销售额, -- 保留两位小数
    RANK()OVER(ORDER BY COUNT(payment_value) DESC) AS 排名
FROM olist_order_payments_dataset pd JOIN olist_order_items_dataset oid
ON pd.order_id = oid.order_id
JOIN olist_products_dataset op
ON op.product_id = oid.product_id
JOIN product_category_name_translation pcn
ON pcn.product_category_name = op.product_category_name
GROUP BY 商品英文名称
ORDER BY 排名
LIMIT 10;

健康美容以1,404,678的销售额位居榜首,其次是手表礼品和家居产品。前十名中,家居相关品类(如床上用品、家具装饰、家居杂货)占据多数,反映消费者对生活品质的关注度较高。从畅销的商品种类来看,家居产品,美容健康和运动休闲的产品位居前三,反映出消费者网购的物品多数为日用品。

5.3.2 品类所含的商品总数分析

-- 统计各品类所拥有的商品数量
SELECT
    product_category_name_english AS 商品名称,
    COUNT(product_id) AS 商品数量,
    CONCAT(ROUND(COUNT(product_id)*100/SUM(COUNT(product_id)) OVER(),2),'%') AS 所占百分比
FROM olist_products_dataset od JOIN product_category_name_translation pt
    ON od.product_category_name = pt.product_category_name
GROUP BY product_category_name_english
ORDER BY 商品数量 DESC;

经过统计商品id的总数为32341件,品类总数为73种。根据查询的数据可以看到,前十的商品件数共占平台商品id总数约65%,其中床上用品,运动休闲和家具的类别占了商品件数的前三,可以看出来olist store的公司平台倾向于售卖家庭用品与娱乐用品较多,比较符合巴西网民的网购需求。

同时从Tableau所分析的视图来看,非常多的商品种类所含的商品数量均小于500,产品不够丰富,可能难以激发客户的消费欲望。

5.3.3 商品信息分析

-- 商品详情
SELECT
    product_id,
	product_photos_qty, -- 所含图片数量
	product_description_lenght -- 商品描述的字段长度
FROM olist_products_dataset opd
GROUP BY product_id,product_photos_qty,product_description_lenght;

从分析结果上我们可以看到,大部分的商品描述其实非常的简单,其中图片数量在0到5张的商品数量占到了总计的接近90%,而商品描述的内容在1000以内的也占到了接近75%。明显商品购买页面的内容是比较少的,不利于客户挑选自己所需要的商品。公司应该提醒卖家去更多的完善商品的相关信息,让客户有更加好的购物体验,对此公司也可以出台相关的活动来扶持平台的卖家完善商品信息。

六、总结

6.1 运营方面

从州GMV以及每日GMV来看,最大的圣保罗州GMV总数最高,可以加强与该地区的合作,例如与政府一起携手促进互联网购物的发展,与当地的物流公司加强合作提高商品运输的效率等等,同时从每日GMV来看,2018年后半年出现了一定的下滑趋势,公司需要开创新的购物模式,优化网购平台等措施来防止GMV的下滑。

6.2 客户方面

1.从客户的支付手段以及分期情况来看,公司可以更多的与银行进行合作,推出免息或者信用卡积分等活动来促进消费者进行消费。

2.从客户的下单时间来看,客户喜欢在早上的10点到晚上22点进行购物,在这个时间段公司可以根据大数据为不同的客户推送不同的内容以此来促进消费

3.RFM客户分类模型,以及新老客的占比中,可以明显看到客户对于平台的粘性非常的低,用户的复购率不高,非常多的客户在该平台的消费次数都只有1次。平台可以给一些消费过的用户推送一些‘回归礼包’,给予一些消费优惠去吸引客户再次进行消费。由RFM模型对客户进行分类以后,可以着重加强对于流失风险客户与一般客户的内容推送,提高客户的留存率,也可以展开一些问卷调查,收集该类客户认为平台有哪些不足之处需要改进。

6.3 商品方面

1.从商品种类的销售排行来看,可以与优质供应商建立长期合作,确保销售额高以及销量高的商品(手表礼物,美容健康等)可以保持其竞争力,通过打造这些爆品,可以更好地带动整个平台的发展以及相关产品的销量。

2.大部分商品图片以及商品描述内容都比较少,应提醒卖家为产品拍摄更多详细的图片,丰富商品描述的内容,平台可以对商品详情页开展代写服务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值