机器学习:ROC与AUC(Python)

本文介绍了如何通过SVM、逻辑回归、线性判别分析和AdaBoostClassifier等模型在乳腺癌数据集上计算并绘制ROC曲线,展示了不同模型的真阳性率和假阳性率变化,以及AUC值,以评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"""
ROC全称是“受试者工作特征”(Receiver Operating Characteristic)曲线。
根据学习器的预测结果,把阈值从0变到最大,即刚开始是把每个样本作为正例进行预测,随着阈值的增大,学习器预测正样例数越来越少,
直到最后没有一个样本是正样例。在这一过程中,每次计算出两个重要量的值,分别以它们为横、纵坐标作图,就得到了“ROC曲线”。

ROC曲线以“真正例率”(True Positive Rate,简称TPR)为纵轴,横轴为“假正例率”(False Positive Rate,简称FPR),
ROC偏重研究基于测试样本评估值的排序好坏。

(0, 0)表示将所有的样本预测为负例,(1, 1)则表示将所有的样本预测为正例,
(0, 1)表示正例全部出现在负例之前的理想情况,(1, 0)则表示负例全部出现在正例之前的最差情况。
"""

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler, LabelEncoder  # 标准化
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import roc_curve, auc


breatcancer = pd.read_csv('breast+cancer+wisconsin+diagnostic/wdbc.data', header=None).iloc[:, 1:]
X = StandardScaler().fit_transform(breatcancer.iloc[:, 1:])  # 数据标准化
n_samples, n_features = X.shape
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]  # 添加噪声
y = breatcancer.iloc[:, 0]  # 对应编码1、2转化为0、1
lab_en = LabelEncoder()
y = lab_en.fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0,
                                                    shuffle=True, stratify=y)

y_score = dict()  # 存储各算法模型的决策得分
svm_linear = SVC(kernel='linear', probability=True, random_state=0)
# 通过decision_function()计算得到的y_score的值,用在roc_curve()函数中
svm_fit = svm_linear.fit(X_train, y_train)
y_score["svm_linear"] = svm_linear.decision_function(X_test)

lg_model = LogisticRegression(max_iter=1000).fit(X_train, y_train)  # 逻辑回归
y_score["LogisticRegression"] = lg_model.decision_function(X_test)

lda_model = LinearDiscriminantAnalysis().fit(X_train, y_train)  # 线性判别
y_score["LinearDiscriminantAnalysis"] = lda_model.decision_function(X_test)

ada_model = AdaBoostClassifier().fit(X_train, y_train)  # 集成学习
y_score["AdaBoostClassifier"] = ada_model.decision_function(X_test)

fpr, tpr, threshold, ks_max, best_thr = dict(), dict(), dict(), dict(), dict()
for key in y_score.keys():
    # 计算真正率,假正率,对应阈值
    fpr[key], tpr[key], threshold[key] = roc_curve(y_test, y_score[key])
    # 计算ks和最佳阈值
    KS_max = tpr[key] - fpr[key]  # 差值向量
    ind = np.argmax(KS_max)  # 最大KS值索引
    ks_max[key] = KS_max[ind]  # 最大KS
    best_thr[key] = threshold[key][ind]  # 最大阈值
    print('%s: fpr = %.5f, tpr = %.5f, 最大KS为:%.5f, 最佳阈值为:%.5f'
          % (key, fpr[key][ind], tpr[key][ind], ks_max[key], best_thr[key]))

plt.figure(figsize=(8, 6))
line = ['r-*', 'b-o', 'g-+', 'c-x']
for i, key in enumerate(y_score.keys()):
    # 假正率为横坐标,真正率为纵坐标做曲线
    plt.plot(fpr[key], tpr[key], line[i], lw=2, label=key+' AUC = %0.2f' % auc(fpr[key], tpr[key]))

plt.plot([0, 1], [0, 1], color='navy', lw=1, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.grid()
plt.xlabel('False Positive Rate', fontsize=12)
plt.ylabel('True Positive Rate', fontsize=12)
plt.title('Binary classification of ROC and AUC', fontsize=14)
plt.legend(loc="lower right", fontsize=12)
plt.show()

 

 

### Python机器学习 ROCAUC 的概念 ROC (Receiver Operating Characteristic) 曲线用于展示不同阈值下分类器的真阳性率(True Positive Rate, TPR)和假阳性率(False Positive Rate, FPR)[^1]。TPR 表示实际为正类的情况下预测为正的概率;FPR 则表示实际为负类却错误地预测为正的比例。 AUC (Area Under the Curve),即曲线下面积,衡量的是整个二分类模型的好坏程度。理想的分类器其 AUC 值接近于 1,意味着具有完美的区分能力;而当 AUC 接近 0.5,则表明该分类器几乎不具备任何判别力[^2]。 ### 计算方法实现方式 为了计算并绘制 ROCAUC,在 Python 中通常会借助 `scikit-learn` 库中的函数来完成这一过程: #### 导入必要的库 ```python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import roc_curve, auc from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt ``` #### 加载数据集并预处理 这里以鸢尾花(Iris)数据为例说明多类别情况下的操作流程: ```python iris = datasets.load_iris() X = iris.data y = iris.target # 将标签转换成二进制形式 Y = label_binarize(y, classes=[0, 1, 2]) n_classes = Y.shape[1] # 数据分割 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=.5, random_state=0) ``` #### 构建分类器并训练 采用随机森林作为基础估计器构建 OvR 多标签分类器: ```python classifier = OneVsRestClassifier(RandomForestClassifier(n_estimators=100)) y_score = classifier.fit(X_train, y_train).predict_proba(X_test) ``` #### 绘制 ROC 曲线及计算 AUC 对于每一个类别分别获取对应的 FPR、TPR 并求得各自的 AUC 值: ```python fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # 宏平均 ROC 曲线及其 AUC all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= n_classes macro_roc_auc = auc(all_fpr, mean_tpr) plt.figure(figsize=(8, 6), dpi=100) lw = 2 colors = ['aqua', 'darkorange', 'cornflowerblue'] for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show() ``` 上述代码展示了如何针对多分类问题通过宏平均法得到整体表现指标,并给出了具体绘图的方法[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

捕捉一只Diu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值