机器学习:朴素贝叶斯算法(Python)

一、朴素贝叶斯算法的实现

naive_bayes_classifier.py

import numpy as np
import collections as cc  # 集合的计数功能
from scipy.stats import norm  # 极大似然估计样本的均值和标准方差
from data_bin_wrapper import DataBinsWrapper


class NaiveBayesClassifier:
    """
    朴素贝叶斯分类器:对于连续属性两种方式操作,1是分箱处理,2是直接进行高斯分布的参数估计
    """
    def __init__(self, is_binned=False, is_feature_all_R=False, feature_R_idx=None, max_bins=10):
        self.is_binned = is_binned  # 连续特征变量数据是否进行分箱操作,离散化
        if is_binned:
            self.is_feature_all_R = is_feature_all_R  # 是否所有特征变量都是连续数值,bool
            self.max_bins = max_bins  # 最大分箱数
            self.dbw = DataBinsWrapper()  # 分箱对象
            self.dbw_XrangeMap = dict()  # 存储训练样本特征分箱的段点
        self.feature_R_idx = feature_R_idx  # 混合式数据中连续特征变量的索引
        self.class_values, self.n_class = None, 0  # 类别取值以及类别数
        self.prior_prob = dict()  # 先验分布,键是类别取值,键是类别取值
        self.classified_feature_prob = dict()  # 存储每个类所对应的特征变量取值频次或者连续属性的高斯分布参数
        self.feature_values_num = dict()  # 训练样本中每个特征不同的取值数,针对离散数据
        self.class_values_num = dict()  # 目标集中每个类别的样本量,Dc

    def _prior_probability(self, y_train):
        """
        计算类别的先验概率
        :param y_train: 目标集
        :return:
        """
        n_samples = len(y_train)  # 总样本量
        self.class_values_num = cc.Counter(y_train)  # Counter({'否': 9, '是': 8})
        # print(self.class_values_num)
        for key in self.class_values_num.keys():
            self.prior_prob[key] = (self.class_values_num[key] + 1) / (n_samples + self.n_class)
        # print(self.prior_prob)

    def _data_bin_wrapper(self, x_samples):
        """
        针对特定的连续特征属性索引dbw_feature_idx,分别进行分箱,考虑测试样本与训练样本使用同一个XrangeMap
        :param x_samples: 样本:即可以是训练样本,也可以是测试样本
        :return:
        """
        self.feature_R_idx = np.asarray(self.feature_R_idx)
        x_samples_prop = []  # 分箱之后的数据
        if not self.dbw_XrangeMap:
            # 为空,即创建决策树前所做的分箱操作
            for i in range(x_samples.shape[1]):
                if i in self.feature_R_idx:  # 说明当前特征是连续数值
                    self.dbw.fit(x_samples[:, i])
                    self.dbw_XrangeMap[i] = self.dbw.XrangeMap
                    x_samples_prop.append(self.dbw.transform(x_samples[:, i]))
                else:
                    x_samples_prop.append(x_samples[:, i])
        else:  # 针对测试样本的分箱操作
            for i in range(x_samples.shape[1]):
                if i in self.feature_R_idx:  # 说明当前特征是连续数值
                    x_samples_prop.append(self.dbw.transform(x_samples[:, i], self.dbw_XrangeMap[i]))
                else:
                    x_samples_prop.append(x_samples[:, i])
        return np.asarray(x_samples_prop).T

    def fit(self, x_train, y_train):
        """
        朴素贝叶斯分类器训练,可将朴素贝叶斯分类器涉及的所有概率估值事先计算好存储起来
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        self.class_values = np.unique(y_train)  # 类别取值
        self.n_class = len(self.class_values)  # 类别数
        if self.n_class < 2:
            print("仅有一个类别,不进行贝叶斯分类器估计...")
            exit(0)
        self._prior_probability(y_train)  # 先验概率
        # 每个特征变量不同的取值数,类条件概率的分子D(x, xi)
        for i in range(x_train.shape[1]):
            self.feature_values_num[i] = len(np.unique(x_train[:, i]))
        if self.is_binned:
            self._binned_fit(x_train, y_train)  # 分箱处理
        else:
            self._gaussian_fit(x_train, y_train)  # 直接进行高斯分布估计

    def _binned_fit(self, x_train, y_train):
        """
        对连续特征属性进行分箱操作,然后计算各概率值
        :param x_train:
        :param y_train:
        :return:
        """
        if self.is_feature_all_R:  # 全部是连续
            self.dbw.fit(x_train)
            x_train = self.dbw.transform(x_train)
        elif self.feature_R_idx is not None:
            x_train = self._data_bin_wrapper(x_train)

        for c in self.class_values:
            class_x = x_train[y_train == c]  # 获取对应类别的样本
            feature_counter = dict()  # 每个离散变量特征中特定值的出现的频次,连续特征变量存u、sigma
            for i in range(x_train.shape[1]):
                feature_counter[i] = cc.Counter(class_x[:, i])
            self.classified_feature_prob[c] = feature_counter
        print(self.classified_feature_prob)

    def _gaussian_fit(self, x_train, y_train):
        """
        连续特征变量不进行分箱,直接进行高斯分布估计,离散特征变量取值除外
        :param x_train:
        :param y_train:
        :return:
        """
        for c in self.class_values:
            class_x = x_train[y_train == c]  # 获取对应类别的样本
            feature_counter = dict()  # 每个离散变量特征中特定值的出现的频次,连续特征变量存u、sigma
            for i in range(x_train.shape[1]):
                if self.feature_R_idx is not None and (i in self.feature_R_idx):  # 连续特征
                    # 极大似然估计均值和方差
                    mu, sigma = norm.fit(np.asarray(class_x[:, i], dtype=np.float64))
                    feature_counter[i] = {"mu": mu, "sigma": sigma}
                else:  # 离散特征
                    feature_counter[i] = cc.Counter(class_x[:, i])
            self.classified_feature_prob[c] = feature_counter
        print(self.classified_feature_prob)

    def predict_proba(self, x_test):
        """
        预测测试样本所属类别的概率
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        if self.is_binned:
            return self._binned_predict_proba(x_test)
        else:
            return self._gaussian_predict_proba(x_test)

    def _binned_predict_proba(self, x_test):
        """
        连续特征变量进行分箱离散化,预测
        :param x_test: 测试样本集
        :return:
        """
        if self.is_feature_all_R:
            x_test = self.dbw.transform(x_test)
        elif self.feature_R_idx is not None:
            x_test = self._data_bin_wrapper(x_test)
        y_test_hat = np.zeros((x_test.shape[0], self.n_class))  # 存储测试样本所属各个类别概率
        for i in range(x_test.shape[0]):
            test_sample = x_test[i, :]  # 当前测试样本
            y_hat = []  # 当前测试样本所属各个类别的概率
            for c in self.class_values:
                prob_ln = np.log(self.prior_prob[c])  # 当前类别的先验概率,取对数
                # 当前类别下不同特征变量不同取值的频次,构成字典
                feature_frequency = self.classified_feature_prob[c]
                for j in range(x_test.shape[1]):  # 针对每个特征变量
                    value = test_sample[j]  # 当前测试样本的当前特征取值
                    cur_feature_freq = feature_frequency[j]  # Counter({'浅白': 4, '青绿': 3, '乌黑': 2})
                    # 按照拉普拉斯修正方法计算
                    prob_ln += np.log((cur_feature_freq.get(value, 0) + 1) /
                                      (self.class_values_num[c] + self.feature_values_num[j]))
                y_hat.append(prob_ln)  # 输入第c个类别的概率
            y_test_hat[i, :] = self.softmax_func(np.asarray(y_hat))  # 适合多分类,且归一化
        return y_test_hat

    @staticmethod
    def softmax_func(x):
        """
        softmax函数,为避免上溢或下溢,对参数x做限制
        :param x: 数组: 1 * n_classes
        :return:
        """
        exps = np.exp(x - np.max(x))  # 避免溢出,每个数减去其最大值
        return exps / np.sum(exps)

    def _gaussian_predict_proba(self, x_test):
        """
        连续特征变量不进行分箱,直接按高斯分布估计
        :param x_test: 测试样本集
        :return:
        """
        y_test_hat = np.zeros((x_test.shape[0], self.n_class))  # 存储测试样本所属各个类别概率
        for i in range(x_test.shape[0]):
            test_sample = x_test[i, :]  # 当前测试样本
            y_hat = []  # 当前测试样本所属各个类别的概率
            for c in self.class_values:
                prob_ln = np.log(self.prior_prob[c])  # 当前类别的先验概率,取对数
                # 当前类别下不同特征变量不同取值的频次,构成字典
                feature_frequency = self.classified_feature_prob[c]
                for j in range(x_test.shape[1]):  # 针对每个特征变量
                    value = test_sample[j]  # 当前测试样本的当前特征取值
                    if self.feature_R_idx is not None and (j in self.feature_R_idx):  # 连续特征
                        # 取极大似然估计的均值和方差
                        # print(feature_frequency[j].values())
                        mu, sigma = feature_frequency[j].values()
                        prob_ln += np.log(norm.pdf(value, mu, sigma) + 1e-8)
                    else:
                        cur_feature_freq = feature_frequency[j]  # Counter({'浅白': 4, '青绿': 3, '乌黑': 2})
                        # 按照拉普拉斯修正方法计算
                        prob_ln += np.log((cur_feature_freq.get(value, 0) + 1) /
                                          (self.class_values_num[c] + self.feature_values_num[j]))
                y_hat.append(prob_ln)  # 输入第c个类别的概率
            y_test_hat[i, :] = self.softmax_func(np.asarray(y_hat))  # 适合多分类,且归一化
        return y_test_hat

    def predict(self, x_test):
        """
        预测测试样本所属类别
        :param x_test: 测试样本集
        :return:
        """
        return np.argmax(self.predict_proba(x_test), axis=1)

二、可视化分类边界函数

plt_decision_function.py

import matplotlib.pyplot as plt
import numpy as np


def plot_decision_function(X, y, clf, is_show=True):
    """
    可视化分类边界函数
    :param X: 测试样本
    :param y: 测试样本的类别
    :param clf: 分类模型
    :param is_show: 是否在当前显示图像,用于父函数绘制子图
    :return:
    """
    if is_show:
        plt.figure(figsize=(7, 5))
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xi, yi = np.meshgrid(np.linspace(x_min, x_max, 100),
                         np.linspace(y_min, y_max, 100))
    y_pred = clf.predict(np.c_[xi.ravel(), yi.ravel()])  # 模型预测值
    y_pred = y_pred.reshape(xi.shape)
    plt.contourf(xi, yi, y_pred, cmap="winter", alpha=0.4)
    plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors="k")
    plt.xlabel("Feature 1", fontdict={"fontsize": 12})
    plt.ylabel("Feature 2", fontdict={"fontsize": 12})
    plt.title("NativeBayes Model Classification Boundary", fontdict={"fontsize": 14})
    if is_show:
        plt.show()

三、朴素贝叶斯算法的测试

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from naive_bayes_classifier import NaiveBayesClassifier
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from plt_decision_function import plot_decision_function


# wm = pd.read_csv("watermelon.csv").dropna()
# X, y = np.asarray(wm.iloc[:, 1:-1]), np.asarray(wm.iloc[:, -1])
# # print(X)
# # print(y)
# nbc = NaiveBayesClassifier(is_binned=True, feature_R_idx=[6, 7], max_bins=10)
# nbc.fit(X, y)
# y_proba = nbc.predict_proba(X)
# print(y_proba)
# y_hat = nbc.predict(X)
# print(y_hat)

X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=0.85, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y)

nbc = NaiveBayesClassifier(is_binned=True, max_bins=20, is_feature_all_R=True)
nbc.fit(X_train, y_train)
y_pred = nbc.predict(X_test)
print(classification_report(y_test, y_pred))
plt.figure(figsize=(14, 5))
plt.subplot(121)
plot_decision_function(X_train, y_train, nbc, is_show=False)

nbc = NaiveBayesClassifier(is_binned=False, feature_R_idx=[0, 1])
nbc.fit(X_train, y_train)
y_pred = nbc.predict(X_test)
print(classification_report(y_test, y_pred))
plt.subplot(122)
plot_decision_function(X_train, y_train, nbc, is_show=False)
plt.show()

# al = pd.read_csv("mushroom/agaricus-lepiota.data").dropna()


 

 

  • 14
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,您想了解朴素贝叶斯分类器在 Python 中的实现。下面是一个简单的 Python 代码示例,使用 scikit-learn 库实现朴素贝叶斯分类器: ```python from sklearn.naive_bayes import GaussianNB # 导入高斯朴素贝叶斯模型 from sklearn.datasets import load_iris # 导入数据集 from sklearn.model_selection import train_test_split # 导入数据集分割函数 # 加载数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集分割为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建高斯朴素贝叶斯分类器 gnb = GaussianNB() # 训练模型 gnb.fit(X_train, y_train) # 预测结果 y_pred = gnb.predict(X_test) # 输出预测结果和真实结果的比较 print("预测结果:", y_pred) print("真实结果:", y_test) ``` 这个示例代码使用了 scikit-learn 库中的 `GaussianNB` 类,它实现了高斯朴素贝叶斯分类器。首先,我们加载一个经典的数据集 iris,然后将数据集分割为训练集和测试集。接下来,我们创建一个高斯朴素贝叶斯分类器,训练模型,然后用测试集进行预测并输出预测结果和真实结果的比较。 当然,这只是一个简单的示例代码,实际应用中需要根据具体问题进行调整。 ### 回答2: 朴素贝叶斯分类器是一种常用的机器学习算法,它基于贝叶斯定理和特征之间的条件独立性假设,用于分类问题。在Python中,我们可以使用sklearn库中的朴素贝叶斯分类器来实现。 首先,我们需要导入相应的库。在Python中,我们可以使用以下代码导入sklearn库中的朴素贝叶斯分类器: ``` from sklearn.naive_bayes import GaussianNB ``` 随后,我们需要准备用于训练和测试的数据集。通常,我们将数据集分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的性能。 接下来,我们可以使用以下代码创建一个朴素贝叶斯分类器的实例: ``` classifier = GaussianNB() ``` 然后,我们可以使用训练集来训练分类器模型,使用以下代码: ``` classifier.fit(X_train, y_train) ``` 其中,X_train是训练数据的特征矩阵,y_train是训练数据的标签。 训练完成后,我们可以使用训练好的模型来对测试数据进行分类预测,使用以下代码: ``` y_pred = classifier.predict(X_test) ``` 其中,X_test是测试数据的特征矩阵,y_pred是预测的分类标签。 最后,我们可以使用一些评估指标来评估模型的性能,比如准确率、召回率和F1-score等。 以上就是使用Python实现朴素贝叶斯分类器的简要步骤。朴素贝叶斯分类器是一种简单但有效的分类算法,适用于很多不同类型的问题,如文本分类、垃圾邮件过滤等。在实际应用中,我们可以根据具体的问题和数据特点选择不同种类的朴素贝叶斯分类器,如高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯等。 ### 回答3: 朴素贝叶斯分类器是一种常用的机器学习算法,其基本思想是利用贝叶斯定理进行分类。该算法假设特征之间相互独立,并根据特征的条件概率来计算后验概率,进而判断样本类别。 在Python中,我们可以使用sklearn库的naive_bayes模块来实现朴素贝叶斯分类器。常用的朴素贝叶斯分类器包括高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯。 首先,我们需要导入相应的库和模块。导入的语句如下: from sklearn import naive_bayes 然后,我们可以定义一个朴素贝叶斯分类器对象。例如,使用高斯朴素贝叶斯分类器可以使用以下语句: classifier = naive_bayes.GaussianNB() 接下来,我们需要准备训练数据和标签。假设我们有一个训练集X和对应的标签y,可以使用以下语句将数据传入分类器对象: classifier.fit(X, y) 在训练完成后,我们可以使用分类器进行预测。假设我们有一个测试集X_test,可以使用以下语句进行预测: y_pred = classifier.predict(X_test) 最后,我们可以评估分类器的性能。例如,计算准确率可以使用以下语句: accuracy = classifier.score(X_test, y_test) 除了高斯朴素贝叶斯分类器,多项式朴素贝叶斯和伯努利朴素贝叶斯的使用方法也类似,只是在定义分类器对象时使用相应的模块。 总之,朴素贝叶斯分类器是一种简单而有效的分类算法,在Python中可以使用sklearn库的naive_bayes模块进行实现。通过准备数据、训练分类器、进行预测和评估性能,我们可以实现基于朴素贝叶斯的分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

捕捉一只Diu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值