关于《双指针法》的基础解析

在之前的学习中,从数组到链表,从哈希表到字符串,我们都常听到一种方法——双指针法。

本篇,我们将对双指针法作简单的总结,对之前出现过的使用到双指针的题目进行温习。

温习之初,我们先简单了解双指针法是什么:

双指针法的结构:

1.快慢指针:通过一个快指针和一个慢指针在一个for循环下完成两个for循环的工作

快指针:持续遍历数组,寻找题目要求的元素。

慢指针:指向寻找到的新元素,以此更新数组。

2.左后指针:左后指针分别指向数组的第一项和最后一项,依次收缩区间

左指针:缩小左区间。

右指针:缩小右区间。

以下,我们来介绍双指针的简单操作

目录

双指针的简单操作

1.数组篇

移除元素

2.字符串篇

I.反转字符串

 II.替换数字

III.反转字符串里的单词

3.链表篇

I.反转链表

II.删除链表的倒数第N个节点

 III.链表相交

IV.环形链表II

4.N数之和篇

I.三数之和

II.四数之和


双指针的简单操作

1.数组篇

移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

说明:

为什么返回数值是整数,但输出的答案是数组呢?

请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。

你可以想象内部操作如下:

// nums 是以“引用”方式传递的。也就是说,不对实参作任何拷贝
int len = removeElement(nums, val);

// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。
for (int i = 0; i < len; i++) {
    print(nums[i]);
}

示例 1:

输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。

示例 2:

输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,3,0,4]
解释:函数应该返回新的长度 5
, 并且 nums 中的前五个元素为 0, 1,3,0,4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。

思路: 对于数组的移除元素,首先可以想到的暴力解法是用两个for循环,一个for循环遍历数组,一个for循环更新新数组。

当两个for循环出现,我们可以联想到符合快慢指针的结构特征,那么用一个快慢指针就可以完成两个for循环的操作,快指针(fast)进行遍历数组的操作,慢指针(slow)跟随fast一同进行,在遇到目标值时停止,当fast向后遍历后slow跟随,这样slow中可以跨过目标值以达到更新数组的效果。

代码如下:

int removeElement(int* nums, int numsSize, int val) {
    int slow=0;
    for(int fast=0;fast<numsSize;fast++){
        if(nums[fast]!=val){
            nums[slow]=nums[fast];
            slow++;
        }
    }
    return slow;
}

2.字符串篇

I.反转字符串

编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。

不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。

示例 1:

输入:s = ["h","e","l","l","o"]
输出:["o","l","l","e","h"]

示例 2:

输入:s = ["H","a","n","n","a","h"]
输出:["h","a","n","n","a","H"]

思路: 我们需要在原数组上修改已知数组,那么可以采用左右指针的结构,左右指针分别指向第一个和最后一个元素,将这两个元素翻转,翻转之后左右指针分别向后向前移动以缩小区间。直至左右指针相遇,整个字符串反转完成。

代码如下:

class Solution {
public:
    void reverseString(vector<char>& s) {
        for(int i=0,j=s.size()-1;i<j;i++,j--){
            swap(s[i],s[j]);//本题使用swap库函数是为了简化元素替换的操作
        }
    }
};
 II.替换数字

给定一个字符串 s,它包含小写字母和数字字符,请编写一个函数,将字符串中的字母字符保持不变,而将每个数字字符替换为number。 例如,对于输入字符串 "a1b2c3",函数应该将其转换为 "anumberbnumbercnumber"。

输入描述

输入一个字符串 s,s 仅包含小写字母和数字字符。

输出描述

打印一个新的字符串,其中每个数字字符都被替换为了number

输入示例

a1b2c3

输出示例

anumberbnumbercnumber

思路:我们的思路是在原数组上进行操作,不必再新设数组。首先对原数组扩宽元素空间,使原数组的大小拓宽到指定字符替换成‘number’后的大小。

之后采用左后指针的结构,左指针指向原指针的最后一个元素,右指针指向更新后的数组最后一个位置,左后指针同时前进,左指针遍历旧数组,右指针遍历新数组,当左指针遇到数字时,右指针开始填充‘number’(从后向前);之后继续向前遍历,直至两个指针相遇。

代码如下:

#include<iostream>
using namespace std;
int main() {
    string s;
    while (cin >> s) {
        int count = 0; // 统计数字的个数
        int sOldSize = s.size();
        for (int i = 0; i < s.size(); i++) {
            if (s[i] >= '0' && s[i] <= '9') {
                count++;
            }
        }
        // 扩充字符串s的大小,也就是每个空格替换成"number"之后的大小
        s.resize(s.size() + count * 5);
        int sNewSize = s.size();
        // 从后先前将空格替换为"number"
        for (int i = sNewSize - 1, j = sOldSize - 1; j < i; i--, j--) {
            if (s[j] > '9' || s[j] < '0') {
                s[i] = s[j];
            } else {
                s[i] = 'r';
                s[i - 1] = 'e';
                s[i - 2] = 'b';
                s[i - 3] = 'm';
                s[i - 4] = 'u';
                s[i - 5] = 'n';
                i -= 5;
            }
        }
        cout << s << endl;
    }
}
III.反转字符串里的单词

给你一个字符串 s ,请你反转字符串中 单词 的顺序。

单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。

返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。

注意:输入字符串 s中可能会存在前导空格、尾随空格或者单词间的多个空格。返回的结果字符串中,单词间应当仅用单个空格分隔,且不包含任何额外的空格。

示例 1:

输入:s = "the sky is blue"
输出:"blue is sky the"

示例 2:

输入:s = "  hello world  "
输出:"world hello"
解释:反转后的字符串中不能存在前导空格和尾随空格。

示例 3:

输入:s = "a good   example"
输出:"example good a"
解释:如果两个单词间有多余的空格,反转后的字符串需要将单词间的空格减少到仅有一个。

思路:本题的思路分为三个步骤,以反转字符串作为基础,1.移除多余空格,2.将整个字符串翻转,3.翻转单个单词。其中最重要的步骤是移除多余空格,我们当然可以用两个for循环来遍历数组,但是既然以反转字符为基础,又有两个for循环的方法,那么自然想到双指针的方法。

用双指针来移除多余空格,重要的是如何删除多余空格并且如何保证单词之间的空格存在,即控制空格,我们不再单纯的用双指针,而是用指针指向的元素充当填充的新数组。

代码如下:

class Solution {
public:
    void reverse(string& s, int start, int end){ 
        for (int i = start, j = end; i < j; i++, j--) {
            swap(s[i], s[j]);
        }
    }

    void removeExtraSpaces(string& s) {//去除所有空格并在相邻单词之间添加空格, 快慢指针。
        int slow = 0;  //相当于建立一个新的数组
        for (int i = 0; i < s.size(); ++i) { 
            if (s[i] != ' ') { //相当于只操作字符,跨过空格
                if (slow != 0) s[slow++] = ' '; //手动控制空格,在每个单词前添加空格(除第一个单词之外)
                while (i < s.size() && s[i] != ' ') { //相当于在遍历单词的时候,将单词存放在新数组slow中
                    s[slow++] = s[i++];
                }
            }
        }
        s.resize(slow); //slow的大小即为去除多余空格后的大小。
    }

    string reverseWords(string s) {
        removeExtraSpaces(s); //去除多余空格,保证单词之间之只有一个空格,且字符串首尾没空格。
        reverse(s, 0, s.size() - 1);
        int start = 0; //removeExtraSpaces后保证第一个单词的开始下标一定是0。
        for (int i = 0; i <= s.size(); ++i) {
            if (i == s.size() || s[i] == ' ') { //到达空格或者串尾,说明一个单词结束。进行翻转。
                reverse(s, start, i - 1); //翻转,注意是左闭右闭 []的翻转。
                start = i + 1; //更新下一个单词的开始下标start
            }
        }
        return s;
    }
};

3.链表篇

 本篇承接关于《链表》的基础解析(残卷)对链表的部分题目继续作解释。

I.反转链表

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

示例 1:

输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]

示例 2:

输入:head = [1,2]
输出:[2,1]

示例 3:

输入:head = []
输出:[]

思路: 通过对链表结构的理解,反转链表只需要对链表的next指针进行改变,直接改变链表的方向。首先定义一个cur指针,指向头结点,再定义一个pre指针,初始化为null。然后就要开始反转了,首先要把 cur->next 节点用tmp指针保存一下,也就是保存一下这个节点。为什么要保存一下这个节点呢,因为接下来要改变 cur->next 的指向了,将cur->next 指向pre ,此时已经反转了第一个节点了。接下来,就是循环走如下代码逻辑了,继续移动pre和cur指针。最后,cur 指针已经指向了null,循环结束,链表也反转完毕了。 此时我们return pre指针就可以了,pre指针就指向了新的头结点。

代码如下:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 
struct ListNode* reverseList(struct ListNode* head) {
    struct ListNode*temp;
    struct ListNode*cur=head;
    struct ListNode*pre=NULL;
    while(cur){
        temp=cur->next;
        cur->next=pre;
        pre=cur;
        cur=temp;
    }
    return pre;
}
*/
struct ListNode* reverseList(struct ListNode* head){
    struct ListNode*temp;
    struct ListNode*pre=NULL;
    while(head){
        temp=head->next;
        head->next=pre;
        pre=head;
        head=temp;
    }
    return pre;
}
II.删除链表的倒数第N个节点

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。

示例 1:

输入:head = [1,2,3,4,5], n = 2
输出:[1,2,3,5]

示例 2:

输入:head = [1], n = 1
输出:[]

示例 3:

输入:head = [1,2], n = 1
输出:[1]

思路: 双指针的应用,大体思路是让fast先移动n步,之后快慢指针同时移动,直至快指针指向null,删除慢指针指向的节点。

实际操作中,我们引入了虚拟头节点,首先定义fast与slow指针,初始值为虚拟头节点,fast先走n+1步,这样slow指向删除结点的上一个节点,以便作删除操作。

代码如下:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
struct ListNode* removeNthFromEnd(struct ListNode* head, int n) {
    struct ListNode*dummy=malloc(sizeof(struct ListNode));
    dummy->val=0;
    dummy->next=head;
    struct ListNode*fast=head;
    struct ListNode*slow=dummy;
    for(int i=0;i<n;++i){
        fast=fast->next;
    }
    while(fast){
        fast=fast->next;
        slow=slow->next;
    }
    slow->next=slow->next->next;
    head=dummy->next;
    free(dummy);
    return head;
}
 III.链表相交

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。

图示两个链表在节点 c1 开始相交

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

示例 1:

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at '8'
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。

示例 2:

输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at '2'
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。

思路:本题类似于推木块的游戏,尾部对齐,多余的部分推出去,这里的双指针是指两个指针指向不同的链表。

代码如下:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {
   struct ListNode *l = NULL, *s = NULL;
    int lenA = 0, lenB = 0, gap = 0;
    // 求出两个链表的长度
    s = headA;
    while (s) {
        lenA ++;
        s = s->next;
    }
    s = headB;
    while (s) {
        lenB ++;
        s = s->next;
    }

    // 求出两个链表长度差
    if (lenA > lenB) {
        l = headA, s = headB;
        gap = lenA - lenB;
    } else {
        l = headB, s = headA;
        gap = lenB - lenA;
    }

    // 尾部对齐
    while (gap--) l = l->next;
    // 移动,并检查是否有相同的元素
    while (l) {
        if (l == s) return l;
        l = l->next, s = s->next;
    }

    return NULL;
}
IV.环形链表II

给定一个链表的头节点  head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

 思路:本题实际上是一道数学分析题,通过计算得出链表是否有环以及环的入口在哪。

具体的计算分析参考环形链表II

代码如下:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
struct ListNode *detectCycle(struct ListNode *head) {
    struct ListNode* fast = head;
        struct ListNode* slow = head;
        while(fast != NULL && fast->next != NULL) {
            slow = slow->next;
            fast = fast->next->next;
            // 快慢指针相遇,此时从head 和 相遇点,同时查找直至相遇
            if (slow == fast) {
                struct ListNode* index1 = fast;
                struct ListNode* index2 = head;
                while (index1 != index2) {
                    index1 = index1->next;
                    index2 = index2->next;
                }
                return index2; // 返回环的入口
            }
        }
        return NULL;
}

4.N数之和篇

I.三数之和

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请

你返回所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。

示例 2:

输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。

示例 3:

输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。

思路:这类题实质上都可以将多数之和转化为两数之和。在数组中遍历,在map中查找。然而,本题与上一题的区别在于去重。如何去重?我们借由本题再次重温双指针法。

双指针法将两重循环化为一层循环,因而代码更加高效。

双指针的用法为:先将数组排序,设立i用于循环,left=i+1,right指向数组最后一项,这样设置的原因在于:当num[i]+num[left]+num[right]>0时,即三数之和大了,这时只需将right前移就好,当num[i]+num[left]+num[right]<0时,即三数之和小了,这时只需将left后移即可。直至left与right相遇。

注意:对于去重;a的去重即对i的去重,

if (nums[i] == nums[i + 1]) { // 去重操作
    continue;
}


b和c的去重,即对left和right的去重,此操作在于找到一组三元组之后,以对right的去重为例,

while (right > left && nums[right] == nums[right - 1]) right--;


同理,left去重相似。

代码如下:

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
          vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        // 找出a + b + c = 0
        // a = nums[i], b = nums[left], c = nums[right]
        for (int i = 0; i < nums.size(); i++) {
            // 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
            if (nums[i] > 0) {
                return result;
            }
            // 错误去重a方法,将会漏掉-1,-1,2 这种情况
            /*
            if (nums[i] == nums[i + 1]) {
                continue;
            }
            */
            // 正确去重a方法
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            int left = i + 1;
            int right = nums.size() - 1;
            while (right > left) {
                // 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
                /*
                while (right > left && nums[right] == nums[right - 1]) right--;
                while (right > left && nums[left] == nums[left + 1]) left++;
                */
                if ((long)nums[i] + nums[left] + nums[right] > 0) right--;
                else if ((long)nums[i] + nums[left] + nums[right] < 0) left++;
                else {
                    result.push_back(vector<int>{nums[i], nums[left], nums[right]});
                    // 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
                    while (right > left && nums[right] == nums[right - 1]) right--;
                    while (right > left && nums[left] == nums[left + 1]) left++;

                    // 找到答案时,双指针同时收缩
                    right--;
                    left++;
                }
            }

        }
        return result;
    }
};
II.四数之和

给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):

  • 0 <= a, b, c, d < n
  • abc 和 d 互不相同
  • nums[a] + nums[b] + nums[c] + nums[d] == target

你可以按 任意顺序 返回答案 。

示例 1:

输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]

示例 2:

输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]

思路:本题思路与上题基本相似,直接看代码:

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
                vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        for (int k = 0; k < nums.size(); k++) {
            // 剪枝处理
            if (nums[k] > target && nums[k] >= 0) {
            	break; // 这里使用break,统一通过最后的return返回
            }
            // 对nums[k]去重
            if (k > 0 && nums[k] == nums[k - 1]) {
                continue;
            }
            for (int i = k + 1; i < nums.size(); i++) {
                // 2级剪枝处理
                if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
                    break;
                }

                // 对nums[i]去重
                if (i > k + 1 && nums[i] == nums[i - 1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.size() - 1;
                while (right > left) {
                    // nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
                    if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
                        right--;
                    // nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
                    } else if ((long) nums[k] + nums[i] + nums[left] + nums[right]  < target) {
                        left++;
                    } else {
                        result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
                        // 对nums[left]和nums[right]去重
                        while (right > left && nums[right] == nums[right - 1]) right--;
                        while (right > left && nums[left] == nums[left + 1]) left++;

                        // 找到答案时,双指针同时收缩
                        right--;
                        left++;
                    }
                }

            }
        }
        return result;
    }
};

本篇对双指针法进行了简单的总结,作为常用的算法之一,双指针的应用还十分广泛,之后再做探索。

上述题目均来自力扣 (LeetCode) 全球极客挚爱的技术成长平台​​​​​​

借鉴来源代码随想录 (programmercarl.com) 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无须logic ᭄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值