在之前的学习中,从数组到链表,从哈希表到字符串,我们都常听到一种方法——双指针法。
本篇,我们将对双指针法作简单的总结,对之前出现过的使用到双指针的题目进行温习。
温习之初,我们先简单了解双指针法是什么:
双指针法的结构:
1.快慢指针:通过一个快指针和一个慢指针在一个for循环下完成两个for循环的工作
快指针:持续遍历数组,寻找题目要求的元素。
慢指针:指向寻找到的新元素,以此更新数组。
2.左后指针:左后指针分别指向数组的第一项和最后一项,依次收缩区间
左指针:缩小左区间。
右指针:缩小右区间。
以下,我们来介绍双指针的简单操作
目录
双指针的简单操作
1.数组篇
移除元素
给你一个数组 nums
和一个值 val
,你需要 原地 移除所有数值等于 val
的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1)
额外空间并 原地 修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
说明:
为什么返回数值是整数,但输出的答案是数组呢?
请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。
你可以想象内部操作如下:
// nums 是以“引用”方式传递的。也就是说,不对实参作任何拷贝 int len = removeElement(nums, val); // 在函数里修改输入数组对于调用者是可见的。 // 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。 for (int i = 0; i < len; i++) { print(nums[i]); }
示例 1:
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2
, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2 输出:5, nums = [0,1,3,0,4] 解释:函数应该返回新的长度 5 , 并且 nums 中的前五个元素为 0, 1,3,0,4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。
思路: 对于数组的移除元素,首先可以想到的暴力解法是用两个for循环,一个for循环遍历数组,一个for循环更新新数组。
当两个for循环出现,我们可以联想到符合快慢指针的结构特征,那么用一个快慢指针就可以完成两个for循环的操作,快指针(fast)进行遍历数组的操作,慢指针(slow)跟随fast一同进行,在遇到目标值时停止,当fast向后遍历后slow跟随,这样slow中可以跨过目标值以达到更新数组的效果。
代码如下:
int removeElement(int* nums, int numsSize, int val) {
int slow=0;
for(int fast=0;fast<numsSize;fast++){
if(nums[fast]!=val){
nums[slow]=nums[fast];
slow++;
}
}
return slow;
}
2.字符串篇
I.反转字符串
编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s
的形式给出。
不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。
示例 1:
输入:s = ["h","e","l","l","o"] 输出:["o","l","l","e","h"]
示例 2:
输入:s = ["H","a","n","n","a","h"] 输出:["h","a","n","n","a","H"]
思路: 我们需要在原数组上修改已知数组,那么可以采用左右指针的结构,左右指针分别指向第一个和最后一个元素,将这两个元素翻转,翻转之后左右指针分别向后向前移动以缩小区间。直至左右指针相遇,整个字符串反转完成。
代码如下:
class Solution {
public:
void reverseString(vector<char>& s) {
for(int i=0,j=s.size()-1;i<j;i++,j--){
swap(s[i],s[j]);//本题使用swap库函数是为了简化元素替换的操作
}
}
};
II.替换数字
给定一个字符串 s,它包含小写字母和数字字符,请编写一个函数,将字符串中的字母字符保持不变,而将每个数字字符替换为number。 例如,对于输入字符串 "a1b2c3",函数应该将其转换为 "anumberbnumbercnumber"。
输入描述
输入一个字符串 s,s 仅包含小写字母和数字字符。
输出描述
打印一个新的字符串,其中每个数字字符都被替换为了number
输入示例
a1b2c3
输出示例
anumberbnumbercnumber
思路:我们的思路是在原数组上进行操作,不必再新设数组。首先对原数组扩宽元素空间,使原数组的大小拓宽到指定字符替换成‘number’后的大小。
之后采用左后指针的结构,左指针指向原指针的最后一个元素,右指针指向更新后的数组最后一个位置,左后指针同时前进,左指针遍历旧数组,右指针遍历新数组,当左指针遇到数字时,右指针开始填充‘number’(从后向前);之后继续向前遍历,直至两个指针相遇。
代码如下:
#include<iostream>
using namespace std;
int main() {
string s;
while (cin >> s) {
int count = 0; // 统计数字的个数
int sOldSize = s.size();
for (int i = 0; i < s.size(); i++) {
if (s[i] >= '0' && s[i] <= '9') {
count++;
}
}
// 扩充字符串s的大小,也就是每个空格替换成"number"之后的大小
s.resize(s.size() + count * 5);
int sNewSize = s.size();
// 从后先前将空格替换为"number"
for (int i = sNewSize - 1, j = sOldSize - 1; j < i; i--, j--) {
if (s[j] > '9' || s[j] < '0') {
s[i] = s[j];
} else {
s[i] = 'r';
s[i - 1] = 'e';
s[i - 2] = 'b';
s[i - 3] = 'm';
s[i - 4] = 'u';
s[i - 5] = 'n';
i -= 5;
}
}
cout << s << endl;
}
}
III.反转字符串里的单词
给你一个字符串 s
,请你反转字符串中 单词 的顺序。
单词 是由非空格字符组成的字符串。s
中使用至少一个空格将字符串中的 单词 分隔开。
返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。
注意:输入字符串 s
中可能会存在前导空格、尾随空格或者单词间的多个空格。返回的结果字符串中,单词间应当仅用单个空格分隔,且不包含任何额外的空格。
示例 1:
输入:s = "the sky is blue
" 输出:"blue is sky the
"
示例 2:
输入:s = " hello world " 输出:"world hello" 解释:反转后的字符串中不能存在前导空格和尾随空格。
示例 3:
输入:s = "a good example" 输出:"example good a" 解释:如果两个单词间有多余的空格,反转后的字符串需要将单词间的空格减少到仅有一个。
思路:本题的思路分为三个步骤,以反转字符串作为基础,1.移除多余空格,2.将整个字符串翻转,3.翻转单个单词。其中最重要的步骤是移除多余空格,我们当然可以用两个for循环来遍历数组,但是既然以反转字符为基础,又有两个for循环的方法,那么自然想到双指针的方法。
用双指针来移除多余空格,重要的是如何删除多余空格并且如何保证单词之间的空格存在,即控制空格,我们不再单纯的用双指针,而是用指针指向的元素充当填充的新数组。
代码如下:
class Solution {
public:
void reverse(string& s, int start, int end){
for (int i = start, j = end; i < j; i++, j--) {
swap(s[i], s[j]);
}
}
void removeExtraSpaces(string& s) {//去除所有空格并在相邻单词之间添加空格, 快慢指针。
int slow = 0; //相当于建立一个新的数组
for (int i = 0; i < s.size(); ++i) {
if (s[i] != ' ') { //相当于只操作字符,跨过空格
if (slow != 0) s[slow++] = ' '; //手动控制空格,在每个单词前添加空格(除第一个单词之外)
while (i < s.size() && s[i] != ' ') { //相当于在遍历单词的时候,将单词存放在新数组slow中
s[slow++] = s[i++];
}
}
}
s.resize(slow); //slow的大小即为去除多余空格后的大小。
}
string reverseWords(string s) {
removeExtraSpaces(s); //去除多余空格,保证单词之间之只有一个空格,且字符串首尾没空格。
reverse(s, 0, s.size() - 1);
int start = 0; //removeExtraSpaces后保证第一个单词的开始下标一定是0。
for (int i = 0; i <= s.size(); ++i) {
if (i == s.size() || s[i] == ' ') { //到达空格或者串尾,说明一个单词结束。进行翻转。
reverse(s, start, i - 1); //翻转,注意是左闭右闭 []的翻转。
start = i + 1; //更新下一个单词的开始下标start
}
}
return s;
}
};
3.链表篇
本篇承接关于《链表》的基础解析(残卷)对链表的部分题目继续作解释。
I.反转链表
给你单链表的头节点 head
,请你反转链表,并返回反转后的链表。
示例 1:
输入:head = [1,2,3,4,5] 输出:[5,4,3,2,1]
示例 2:
输入:head = [1,2] 输出:[2,1]
示例 3:
输入:head = [] 输出:[]
思路: 通过对链表结构的理解,反转链表只需要对链表的next指针进行改变,直接改变链表的方向。首先定义一个cur指针,指向头结点,再定义一个pre指针,初始化为null。然后就要开始反转了,首先要把 cur->next 节点用tmp指针保存一下,也就是保存一下这个节点。为什么要保存一下这个节点呢,因为接下来要改变 cur->next 的指向了,将cur->next 指向pre ,此时已经反转了第一个节点了。接下来,就是循环走如下代码逻辑了,继续移动pre和cur指针。最后,cur 指针已经指向了null,循环结束,链表也反转完毕了。 此时我们return pre指针就可以了,pre指针就指向了新的头结点。
代码如下:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
struct ListNode* reverseList(struct ListNode* head) {
struct ListNode*temp;
struct ListNode*cur=head;
struct ListNode*pre=NULL;
while(cur){
temp=cur->next;
cur->next=pre;
pre=cur;
cur=temp;
}
return pre;
}
*/
struct ListNode* reverseList(struct ListNode* head){
struct ListNode*temp;
struct ListNode*pre=NULL;
while(head){
temp=head->next;
head->next=pre;
pre=head;
head=temp;
}
return pre;
}
II.删除链表的倒数第N个节点
给你一个链表,删除链表的倒数第 n
个结点,并且返回链表的头结点。
示例 1:
输入:head = [1,2,3,4,5], n = 2 输出:[1,2,3,5]
示例 2:
输入:head = [1], n = 1 输出:[]
示例 3:
输入:head = [1,2], n = 1 输出:[1]
思路: 双指针的应用,大体思路是让fast先移动n步,之后快慢指针同时移动,直至快指针指向null,删除慢指针指向的节点。
实际操作中,我们引入了虚拟头节点,首先定义fast与slow指针,初始值为虚拟头节点,fast先走n+1步,这样slow指向删除结点的上一个节点,以便作删除操作。
代码如下:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
struct ListNode* removeNthFromEnd(struct ListNode* head, int n) {
struct ListNode*dummy=malloc(sizeof(struct ListNode));
dummy->val=0;
dummy->next=head;
struct ListNode*fast=head;
struct ListNode*slow=dummy;
for(int i=0;i<n;++i){
fast=fast->next;
}
while(fast){
fast=fast->next;
slow=slow->next;
}
slow->next=slow->next->next;
head=dummy->next;
free(dummy);
return head;
}
III.链表相交
给你两个单链表的头节点 headA
和 headB
,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null
。
图示两个链表在节点 c1
开始相交:
题目数据 保证 整个链式结构中不存在环。
注意,函数返回结果后,链表必须 保持其原始结构 。
示例 1:
输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3 输出:Intersected at '8' 解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。 从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。 在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
示例 2:
输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1 输出:Intersected at '2' 解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。 从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。 在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。
示例 3:
输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2 输出:null 解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。 由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。 这两个链表不相交,因此返回 null 。
思路:本题类似于推木块的游戏,尾部对齐,多余的部分推出去,这里的双指针是指两个指针指向不同的链表。
代码如下:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {
struct ListNode *l = NULL, *s = NULL;
int lenA = 0, lenB = 0, gap = 0;
// 求出两个链表的长度
s = headA;
while (s) {
lenA ++;
s = s->next;
}
s = headB;
while (s) {
lenB ++;
s = s->next;
}
// 求出两个链表长度差
if (lenA > lenB) {
l = headA, s = headB;
gap = lenA - lenB;
} else {
l = headB, s = headA;
gap = lenB - lenA;
}
// 尾部对齐
while (gap--) l = l->next;
// 移动,并检查是否有相同的元素
while (l) {
if (l == s) return l;
l = l->next, s = s->next;
}
return NULL;
}
IV.环形链表II
给定一个链表的头节点 head
,返回链表开始入环的第一个节点。 如果链表无环,则返回 null
。
如果链表中有某个节点,可以通过连续跟踪 next
指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos
来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos
是 -1
,则在该链表中没有环。注意:pos
不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改 链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1 输出:返回索引为 1 的链表节点 解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0 输出:返回索引为 0 的链表节点 解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1 输出:返回 null 解释:链表中没有环。
思路:本题实际上是一道数学分析题,通过计算得出链表是否有环以及环的入口在哪。
具体的计算分析参考环形链表II。
代码如下:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
struct ListNode *detectCycle(struct ListNode *head) {
struct ListNode* fast = head;
struct ListNode* slow = head;
while(fast != NULL && fast->next != NULL) {
slow = slow->next;
fast = fast->next->next;
// 快慢指针相遇,此时从head 和 相遇点,同时查找直至相遇
if (slow == fast) {
struct ListNode* index1 = fast;
struct ListNode* index2 = head;
while (index1 != index2) {
index1 = index1->next;
index2 = index2->next;
}
return index2; // 返回环的入口
}
}
return NULL;
}
4.N数之和篇
I.三数之和
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请
你返回所有和为 0
且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
思路:这类题实质上都可以将多数之和转化为两数之和。在数组中遍历,在map中查找。然而,本题与上一题的区别在于去重。如何去重?我们借由本题再次重温双指针法。
双指针法将两重循环化为一层循环,因而代码更加高效。
双指针的用法为:先将数组排序,设立i用于循环,left=i+1,right指向数组最后一项,这样设置的原因在于:当num[i]+num[left]+num[right]>0时,即三数之和大了,这时只需将right前移就好,当num[i]+num[left]+num[right]<0时,即三数之和小了,这时只需将left后移即可。直至left与right相遇。
注意:对于去重;a的去重即对i的去重,
if (nums[i] == nums[i + 1]) { // 去重操作
continue;
}
b和c的去重,即对left和right的去重,此操作在于找到一组三元组之后,以对right的去重为例,
while (right > left && nums[right] == nums[right - 1]) right--;
同理,left去重相似。
代码如下:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) {
return result;
}
// 错误去重a方法,将会漏掉-1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重a方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if ((long)nums[i] + nums[left] + nums[right] > 0) right--;
else if ((long)nums[i] + nums[left] + nums[right] < 0) left++;
else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
II.四数之和
给你一个由 n
个整数组成的数组 nums
,和一个目标值 target
。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]]
(若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
a
、b
、c
和d
互不相同nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
示例 1:
输入:nums = [1,0,-1,0,-2,2], target = 0 输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
示例 2:
输入:nums = [2,2,2,2,2], target = 8 输出:[[2,2,2,2]]
思路:本题思路与上题基本相似,直接看代码:
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 剪枝处理
if (nums[k] > target && nums[k] >= 0) {
break; // 这里使用break,统一通过最后的return返回
}
// 对nums[k]去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 2级剪枝处理
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
// 对nums[i]去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};
本篇对双指针法进行了简单的总结,作为常用的算法之一,双指针的应用还十分广泛,之后再做探索。