笔记---求组合数

暴力求

ll C(int a,int b){
	ll res = 1;
	for(int i = a,j = 1;j <= b;j++,i--){
		res = res * i /j;
		if(res > n)return res;
	}
	return res;
}

总:
①10w次询问——1 <= b <= a <= 2000——递推求—— N N N2
②1w次询问——1 <= b <= a <= 105——公式求—— N l o g N NlogN NlogN
③20次询问——1 <= b <= a <= 1018——Lucas定理
④1次询问——1 <= b <= a <= 5000——拆分质因子

AcWing.885.求组合数Ⅰ

给定 n n n 组询问,每组询问给定两个整数 a , b a,b ab,请你输出 C C Cab m o d ( 10 mod(10 mod(109 + 7 ) +7) +7) 的值。

输入格式
第一行包含整数 n n n

接下来 n n n 行,每行包含一组 a a a b b b

输出格式
n n n 行,每行输出一个询问的解。

数据范围
1 ≤ n ≤ 10000 , 1 ≤ b ≤ a ≤ 2000 1≤n≤10000,1≤b≤a≤2000 1n10000,1ba2000

输入样例:

3
3 1
5 3
2 2

输出样例:

3
10
1

组合数的算法:
在这里插入图片描述

a和b都最多有两千种,那么不同的a和b的组合数有20002对,那么可以预处理所有的组合数的情况,这样就不会超时

可以根据递推式来递推出所有的组合数的值
在这里插入图片描述
代码:

#include<iostream>
using namespace std;

const int N = 2010, mod = 1e9 + 7;

int c[N][N];

void init() {	//预处理
	for (int i = 0; i < N; i++)	//全部预处理
		for (int j = 0; j <= i; j++)	//i个里面选j个,当然j要小于等于i(组合数要求)
			if (!j)c[i][j] = 1;	//如果j是0,那么组合数等于1
			else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1] ) % mod;	//递推公式
}

int main() {
	init();

	int n; cin >> n;

	while (n--) {
		int a, b;
		cin >> a >> b;
		cout << c[a][b] << endl;
	}
	return 0;
}

AcWing.886.求组合数Ⅱ

给定 n n n 组询问,每组询问给定两个整数 a a a b b b,请你输出 C C Cab m o d ( 10 mod(10 mod(109 + 7 ) +7) +7) 的值。

输入格式
第一行包含整数 n n n

接下来 n n n 行,每行包含一组 a a a b b b

输出格式
n n n 行,每行输出一个询问的解。

数据范围
1 ≤ n ≤ 10000 , 1 ≤ b ≤ a ≤ 10 1≤n≤10000,1≤b≤a≤10 1n10000,1ba105

输入样例:

3
3 1
5 3
2 2

输出样例:

3
10
1

使用组合数的基本公式来求(阶乘的那个)

比如我们要求Cab,则需要求:
a a a的阶乘 m o d mod mod * b − a b-a ba的阶乘的逆元 m o d mod mod* b b b的阶乘的逆元 m o d mod mod

代码:

#include<iostream>
using namespace std;
#define ll long long
const int N = 1e5 + 10;
const int mod = 1e9 + 7;

int fact[N], infact[N];//fact[]:阶乘模mod之后,infact[]阶乘的逆元模mod之后

int qmi(int a, int k, int p) {	//快速幂
  int res = 1;
  while (k) {
  	if (k & 1)res = (ll)res * a % p;
  	k >>= 1;
  	a = (ll)a * a % p;
  }
  return res;
}

int main() {
  fact[0] = infact[0] = 1;//预处理:0的阶乘都是1

  for (int i = 1; i < N; i++) {	//求阶乘与阶乘的逆元
  	fact[i] = (ll)fact[i - 1] * i % mod;

  									//求逆元
  	infact[i] = (ll)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
  }

  int n; cin >> n;
  while (n--) {
  	int a, b; cin >> a >> b;

  	//套公式							提前模,不然三个1e9相乘会爆long long
  	cout << (ll)fact[a] * infact[b] % mod * infact[a - b] % mod << endl;
  }

  return 0;
}

AcWing.887.求组合数Ⅲ

给定 n 组询问,每组询问给定三个整数 a , b , p a,b,p a,b,p,其中 p p p 是质数,请你输出 C C Cab m o d p modp modp
的值。

输入格式
第一行包含整数 n n n

接下来 n n n 行,每行包含一组 a , b , p a,b,p a,b,p

输出格式
n n n 行,每行输出一个询问的解。

数据范围
1 ≤ n ≤ 20 , 1 ≤ b ≤ a ≤ 10 1≤n≤20,1≤b≤a≤10 1n20,1ba1018 , 1 ≤ p ≤ 10 ,1≤p≤10 ,1p105

输入样例:

3
5 3 7
3 1 5
6 4 13

输出样例:

3
3
2

卢卡斯定理:

C C Cab ≡ C ≡ C Camodpbmodp ∗ C * C Ca/pb/p ( m o d p ) (modp) (modp)

代码:

#include<iostream>
using namespace std;
#define ll long long

int p;

int qmi(int a, int k) {	//快速幂,p定义为了全局变量,不需要在传参
	int res = 1;
	while (k) {
		if (k & 1)res = (ll)res * a % p;
		k >>= 1;
		a = (ll)a * a % p;
	}
	return res;
}

int C(int a, int b) {	//按定义的公式算组合数
	int res = 1;

	for (int i = 1, j = a; i <= b; i++, j--) {
		res = (ll)res * j % p;
		res = (ll)res * qmi(i, p - 2) % p;//快速幂求逆元
	}

	return res;
}

int lucas(ll a, ll b) {	//lucas定理
	if (a < p && b < p) return C(a, b);	//如果都不大于模数,那么直接定义公式算
	return (ll)C(a % p, b % p) * lucas(a / p, b / p) % p;	//lucas定理
}

int main() {
	int n; cin >> n;

	while (n--) {
		ll a, b;
		cin >> a >> b >> p;
		cout << lucas(a, b) << endl;
	}

	return 0;
}

AcWing.888.求组合数Ⅳ

输入 a , b a,b a,b,求 C C Cab 的值。

注意结果可能很大,需要使用高精度计算。

输入格式
共一行,包含两个整数 a a a b b b

输出格式
共一行,输出 C C Cab 的值。

数据范围
1 ≤ b ≤ a ≤ 5000 1≤b≤a≤5000 1ba5000

输入样例:

5 3

输出样例:

10

此题中需要先把 C C Cab分解质因数,然后再实现一个高精度乘法即可

故我们先把输入以内的所有质数筛出来,然后求每个质数的次数:
a! = a/p + a/p2 + a/p3 + …
然后用高精度乘法把质因子乘起来

#include<iostream>
#include<vector>
using namespace std;

const int N = 5010;

int primes[N], cnt;//存质数
bool st[N];
int sum[N];

void get_primes(int n) {	//筛质数
	for (int i = 2; i <= n; i++) {
		if (!st[i])primes[cnt++] = i;

		for (int j = 0; primes[j] <= n / i; j++) {
			st[primes[j] * i] = true;
			if (i % primes[j] == 0)break;
		}

	}
}

int get(int n, int p) {	//求n的阶乘里p的个数
	int res = 0;

	while (n) {
		res += n / p;
		n /= p;
	}

	return res;
}

vector<int> mul(vector<int> a, int b) {	//高精度乘法模版
	vector<int> C;
	int t = 0;
	for (int i = 0; i < a.size(); i++) {
		t += a[i] * b;
		C.push_back(t % 10);
		t /= 10;
	}
	while (t) {
		C.push_back(t % 10);
		t /= 10;
	}
	return C;
}

int main() {
	int a, b; cin >> a >> b;

	get_primes(a);	//从2到a筛质数

	for (int i = 0; i < cnt; i++) {
		int p = primes[i];	//取出当前质数
		sum[i] = get(a, p) - get(b, p) - get(a - b, p);//当前数里p的个数
	}

	vector<int> res;	//存高精度乘法结果
	res.push_back(1);

	for (int i = 0; i < cnt; i++)	//枚举所有质数
		for (int j = 0; j < sum[i]; j++)//枚举这个质数的p的个数
			res = mul(res, primes[i]);	//相乘

	for (int i = res.size() - 1; i >= 0; i--) cout << res[i];
	
	return 0;
}

AcWing.889.满足条件的01序列

给定 n n n 0 0 0 n n n 1 1 1,它们将按照某种顺序排成长度为 2 n 2n 2n 的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中 0 0 0 的个数都不少于 1 1 1 的个数的序列有多少个。

输出的答案对 10 10 109 + 7 +7 +7 取模。

输入格式
共一行,包含整数 n n n

输出格式
共一行,包含一个整数,表示答案。

数据范围
1 ≤ n ≤ 10 1≤n≤10 1n105

输入样例:

3

输出样例:

5

此题将选择1或者选择0抽象成在一个二维坐标系内向上走或者想右走,详情见AcWing算法基础课数学知识(三)2:00:00左右,最终得到选法的式子为 C 2 n n C_{2n}^{n} C2nn- C 2 n n − 1 C_{2n}^{n-1} C2nn1= C 2 n n n + 1 \frac{C_{2n}^{n}}{n+1} n+1C2nn ,这个数被称为卡特兰数即这道题我们就是要求一个卡特兰数

代码:

#include<iostream>
using namespace std;

const int mod = 1e9 + 7;//模数是质数的时候用快速幂求逆元,如果不是就只能用扩展欧几里得

int qmi(int a, int k, int p) {	//快速幂
	int res = 1;
	while (k) {
		if (k & 1)res = (long long)res * a % p;
		a = (long long)a * a % p;
		k >>= 1;
	}
	return res;
}

int main() {
	int n; cin >> n;

	int a = 2 * n, b = n;
	int res = 1;

	for (int i = a; i > a - b; i--) res = (long long)res * i % mod;
	for (int i = 1; i <= b; i++)res = (long long)res * qmi(i, mod - 2, mod) % mod;
	//res算完之后是C(2n,n)

	res = (long long)res * qmi(n + 1, mod - 2, mod) % mod;

	cout << res << endl;

	return 0;
}
  • 16
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值