求正方形与长方形的个数

目录

一、题目链接

二、思路

1.求矩形个数(包含正方形和长方形)

2.求正方形个数

3.求长方形个数(矩形个数-正方形个数)

三、代码展示


一、题目链接

洛谷——P2241 统计方形

简而言之,以单位规格1*1的正方形,输入n和m,问当面积为n*m时,正方形个数有多少个,长方形(不包含正方形)个数有多少个?

二、思路

1.求矩形个数(包含正方形和长方形)

在上述矩形中,给出n=5,m=3。

在最上面一排的6个点中,任意取出2个点进行连线即可构成矩形的一个边长,同理,在最左边一列的4个点中,任意取出2个点进行连线即可构成矩形的另一个边长。

根据排列组合,矩形个数 = C(6,2) * C(4,2)\frac{}{} = (6*5 / 2)*(4*3 / 2) = 90 (个) 。

2.求正方形个数

正方形边长为1的个数:3 * 5

正方形边长为2的个数:2 * 4

正方形边长为3的个数:1 * 3

得出规律:

int sum = 0;
//可以把i当作正方形边长
for(int i = 1; i <= min(n,m); i ++) 
    sum += (n+1-i)*(m+1-i);

3.求长方形个数(矩形个数-正方形个数)

三、代码展示

#include<bits/stdc++.h>
#define LL long long
#define IOS ios::sync_with_stdio
#define ct cin.tie(0)
using namespace std;

void solve()
{
	LL n, m, z=0, rec;
	cin >> n >> m;
	可以把i当作正方形边长
	for(int i = 1; i <= min(n,m); i ++) 
        sum += (n+1-i)*(m+1-i);
	//矩形个数(包括正方形)
	rec = (n + 1) * n / 2 * (m + 1) * m / 2;
	cout << z << ' ' << rec - z;
}

int main()
{
	IOS;//快读
	ct;
	solve();

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值