跟李沐学AI -09 Softmax 回归--分类问题

本文介绍了softmax回归在分类问题中的应用,比较了不同损失函数(如均方损失、绝对值函数和HubersRobustLoss),以及如何使用Fashion-MNIST数据集进行图像分类。作者展示了从零开始实现softmax回归的方法,并使用PyTorch进行了实例演示。
摘要由CSDN通过智能技术生成

1、softmax 回归 

回归和分类的区别:

  • 回归估计一个连续值
  • 分类预测一个离散类别

大余量: 指数据之间的置信度之间差别较大..可以更明晰的区别该对象属于某一类

两者之间的差最好大于某 一阈值.

 

2、损失函数

1、均方损失

2、绝对值函数

好处:

梯度永远是常数。对权重的更新影响变化不会很大---稳定性有提升

缺点: 绝对值函数在0点出不可导。

梯度在0点处不平滑。优化到了末期的时候会出现一些问题,可能表现的不会那么稳定。

 3、Huber’ s Robust Loss

损失函数分析技巧: 离预测值比较近和比较远的时候他的作用。 最简单的时候还可以看其函数图形和梯度图像图形。

3、图像分类数据集

我们将使用类似但更复杂的Fashion-MNIST数据集 (Xiao et al., 2017)。

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l_loacal import torch as d2l

import matplotlib.pyplot as plt

d2l.use_svg_display() #可以svg展示 图片,清晰度高一点

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
# transform=trans 拿出来得到的是tensor,而不是图片
mnist_train = torchvision.datasets.FashionMNIST(
    root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans, download=True)
# print(len(mnist_train), len(mnist_test))  #60000 10000
print(mnist_train[0][0].shape) #torch.Size([1, 28, 28])



def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())

        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    # 展示图片
    plt.show()
    return axes


batch_size = 256

def get_dataloader_workers():  #@save
    """使用4个进程来读取数据"""
    return 4


train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())
# 测试读取数据的时间。 有的时候读取数据的时间比处理数据的时间还要长,这是一个需要注意的点
timer = d2l.Timer()
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'


def main():
    # 以下是训练数据集中前几个样本的图像及其相应的标签。
    # iter 得到数据迭代器  next 获取一批数据
    X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
    # 展示图片
    show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))

if __name__ == '__main__':
   main()

4、softmax回归的从零开始实现

import torch
from IPython import display
from d2l_loacal import torch as d2l
import matplotlib.pyplot as plt

batch_size = 256
num_inputs = 784
num_outputs = 10
# 准备数据集
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
'''
这里的每个样本都将用固定长度的向量表示。 原始数据集中的每个样本都是的图像。 
本节将展平每个图像,把它们看作长度为784的向量。

回想一下,在softmax回归中,我们的输出与类别一样多。 因为我们的数据集有10个类别,所以网络输出维度为10。 因此,权重将构成一个784*10的矩阵, 
偏置将构成一个 1*10 的行向量。 

与线性回归一样,我们将使用正态分布初始化我们的权重W,偏置初始化为0。
'''
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)


# ==========定义softmax操作
def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制


# ==========定义模型
def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)


# ==========定义损失函数---交叉熵损失函数
def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])


# ==========分类精度
def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]


class Accumulator:  #@save
    """在n个变量上累加"""
    '''Accumulator用于对多个变量进行累加。 在上面的evaluate_accuracy函数中, 我们在Accumulator实例中创建了2个变量, 
    分别用于存储正确预测的数量和预测的总数量。 当我们遍历数据集时,两者都将随着时间的推移而累加。'''
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


# ============训练
def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

class Animator:  #@save
    """在动画中绘制数据"""
    '''绘制结果的动画'''
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()

        plt.draw()  #画图
        plt.pause(0.001)

        display.display(self.fig)
        display.clear_output(wait=True)

    def show(self):
        display.display(self.fig)

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
plt.pause(0)

 5、softmax 简洁实现

import torch
from torch import nn
from d2l_loacal import d2l_com as d2l_c
import matplotlib.pyplot as plt

batch_size = 256
train_iter, test_iter = d2l_c.load_data_fashion_mnist(batch_size)

# PyTorch不会隐式地调整输入的形状。因此,我们在线性层前定义了展平层(flatten),来调整网络输入的形状
''' softmax回归的输出层是一个全连接层。 因此,为了实现我们的模型, 我们只需在Sequential中添加一个带有10个输出的全连接层。 
同样,在这里Sequential并不是必要的, 但它是实现深度模型的基础。'''
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

def init_weights(m):
    '''以均值0和标准差0.01随机初始化权重。'''
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

# 损失函数
loss = nn.CrossEntropyLoss(reduction='none')

# 优化算法--使用学习率为0.1的小批量随机梯度下降作为优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)


# 训练
num_epochs = 10
d2l_c.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
plt.pause(0)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值