关于Build Your Own Botnet的尝试

这是一次失败的尝试、

原文地址:关于Build Your Own Botnet的尝试 - Pleasure的博客

下面是正文内容:

前言

我在上一篇关于DDOS的文章种提到过这个项目,而且说明了由于这个项目是在2020年发布并开源的,并且已经有两年没有进行跟进,众多系统和模块的迭代导致如今这个项目已经很难再正常部署并运行(不是版本问题就是模块不兼容)。

在网上查阅相关资料的时候发现关于这方面的资料真的很少很少(毕竟谁闲的没事会去研究这玩意)

BYOB也是一个冷门的项目料想也不会有什么人来看,就当自我安慰一下,也算是成果的一部分。麻烦大家同情同情,点个关注谢谢。

在开始之前关于相关编程环境的配置可以去看我最近发的关于Windows编程环境配置的文章。

本人浪费了整整一周的时间尝试也没能成功,只能特此写一篇纪实。这应该是我迄今为止搞过最麻烦的一个项目了……

正文

BYOB——即Build Your Own Botnet。出于教育目的帮助网安人员快速建立botnet进行相应的操作。

GitHub上的一个开源项目,地址放在这:GitHub - malwaredllc/byob: An open-source post-exploitation framework for students, researchers and developers.

当下载完项目压缩包后就会立刻报毒,毕竟项目什么用途大家都心知肚明。打开后可以看到两个主要的文件夹:byob和web-gui。其中byob就是直接通过python进行操作的主程序,而web-gui则是通过部署网络图形界面从而方便不懂得程序的人进行操作。

虽然看着很强,但是由于作者开发的原因在部署上或许会有很多困难。很多模块现如今已经无法再安装了,大家看看就可以了。为了能将整个过程的全貌尽可能展现,所以图片的文字可能较小,大家体谅一下。

如果真心想研究可以参考一下下面两篇文章,还是很有帮助的。

僵尸网络-刺痛内网心脏的针 – XiaoliChan's Blog搭建byob僵尸网络 | CTTalk 长亭合作伙伴技术社区

下面会分别从这两个方面来描述一下个人使用体验。

主应用程序

注意事项

我一开始准备的是两台Windows系统的电脑,一台是主机管理机,一台是Windows11的虚拟机受控机。

直到我看到了这一句话……我直接崩溃了,但总体的操作步骤是一样的,和自己和解了。

为了防止逆向工程,受控机默认是不允许是沙盒环境或是虚拟机的。但是我实在没有这么多的设备了总不好直接对其他人的设备下手吧……

我看网上成功的案例都是在2018年!而且使用的都是Python2.7版本!

命令行中需要事先准备的一些指令(配置环境变量),由于我使用的是Windows系统,所以需要安装Windows版本的git指令。还需要安装3.8.6版本的python。

另外就是upx模块,以及visual studio的C语言编译器。

题外话:由于python不断更新的问题导致了一些库的更新以及弃用:比如在3.4版本之后imp模块被importlib模块正式替代,在3.8版本中pyhook不再被直接支持,一些远古项目甚至要用到2.7版本……如果存在模块问题大家看着办解决吧,我也无能为力了。

首先安装环境

参考操作视频:https://www.youtube.com/watch?v=TBSh_w0I-z8

首先必须要安装相应的环境,即requirements.txt中所罗列的模块以及特定版本——如果在哪一行报错了就要相应的进行独立纠错再重新安装(很麻烦,为了截一张图真的不容易,大家点个关注)。

python ./setup.py 
或者
pip install -r ./requirements.txt

可以看到都是在安装到pyhook的时候中断了,重新下载部署完继续就可以成功。

相应操作环境搭建完成后就可以通过clients.py开始生成木马了

输入python clients.py 192.168.56.1 8888 --name test --compress --freeze 开始生成文件

成功生成exe可执行文件

另外打开一个命令行窗口输入python server.py --host192.168.56.1 --port 8888 等待受控机的连接

输入sessions可以检查受控机的状态

然后最令人崩溃的来了

就是连接木马的这一步,不是显示就是现实exe无法执行

大家另请高明吧

WEB应用程序

题外话:最好不要在VPS(即服务器)中进行这种项目试验。这种项目基于控制台内置了很多操作脚本,用于方便他人的使用,所以通常需要一个web-gui界面——即需要开放一个端口用URL访问来进行操作(https://127.0.0.1:5000类似这种)(类似的项目还有OpenVAS)。然而你可能会在不知情的情况下在VPS部署后造成端口占用进程占用从而发生如网站Nginx服务无法启动之类的情况。还是老老实实在虚拟机上试验吧。(由于装了太多的虚拟机和大型游戏1T的硬盘空间都快不够了……)

下面是作者的安装演示视频:https://www.youtube.com/watch?v=uVyniPrTzuk

这里再附带一个Ubuntu虚拟机的下载地址,管理机的相应操作好像需要在Linux系统中进行(可谓干货满满了,麻烦大家关注一下)

参考文章:技术|完整指南:使用 VirtualBox 在 Windows 上安装 Ubuntu

补充一句网上关于Windows11虚拟机的个人下载大多都需要通过网盘链接任务或是BT种子的模式进行下载

由于某些原因Linux开源中国现以停止更新,系统镜像在VirtualBox和VMware里安装都可以

官方下载地址:https://releases.ubuntu.com/23.10.1/ubuntu-23.10.1-desktop-amd64.iso

由于镜像大小超过4GB上传某度网盘需要开通超级会员,这里就不提供个人下载地址了

部署方式就按照通用的虚拟机部署方式,官网提供的参考参数

首先安装相应的环境,直接以管理员身份运行startup.sh或是分别安装requirements.txt中所需要的模块。

安装所需的时间较长,而且需要更改相应的镜像源!

安装成功后,运行run.py就可以打开网页:(Linux会默认开启apache服务)

进行网页操作的是服务端,命令行插入后门的是客户端即受控机。而在现实生活中,这个后门的插入,就可能会是因为一个连接,一个exe,一个U盘……

打开网址127.0.0.1:5000后显示的就是下面的界面

还是同样的问题,全部都弄好了,就是在木马连接受控机的时候出现问题始终无法成功!我也不知道是什么原因……

理论上是只需要通过这个webshell输入命令行就可以省去植入C2或是RAT后门的步骤,直接操控众多bot快速执行攻击命令从而起到放大攻击隐藏真实攻击IP的效果。

所以这边建议,如果你真的居心不妥而且想要通过DDOS搞垮目标服务器,还是直接去.onion寻找相关服务吧……比如,下面这张图片:后果自己承担!

尾声

在网络安全中存在通过php一句话木马结合PUTTY直接通过ssh连接接管服务器的可能。

byob还要求受控机上有相应的开发环境,可谓是要求重重。

这两种方法都需要对受控机拥有绝对的掌控权限,这样的话还不如直接去租一台VPS来的直接。

可能真正有意思的是整个部署的过程吧。

毕竟现实生活中存在杀毒软件和防火墙,受控机成功的可能性真的是少的可怜。

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pleasure1234

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值