智能售卖系统融合机器视觉,通过目标检测算法检测商品,开发智能售卖系统。采用先进目标检测算法,精准识别商品种类、数量及状态,实时反馈缺货、错放等问题,优化库存管理与补货策略,降低人工成本,提升购物体验,推动自动售卖行业智能化发展。
本项目创新性地将EMA算法与YOLOv11模型结合,显著提升了自助售卖机商品检测的准确性和稳定性,有效解决了光照、角度及背景干扰等问题。系统通过柜门开关前后的图像对比实现全流程自动化扣费。
创新点包括:引入EMA注意力机制降低背景干扰,优化YOLOv11参数改善边缘畸变,构建性能更优的EMA-YOLO模型。
一.安装使用说明
1.web
(1)前端
npm install
运行:
npm run dev
(2)后端
Springboot:加载pom.xml依赖,替换本地Mysql以及Redis地址,随后创建数据库(在sql/ry-vue.sql地址)
Flask:根据YOLO官方教程下载环境,本系统使用Miniconda,通过创建一个独立环境,在该环境下载所需依赖,在本系统中将模型后端调用代码放在util1.py文件内,使用下面命令即可运行:
python util1.py
2.小程序:
本系统小程序端使用HBuilderX并结合微信开发者工具实现,通过开发者工具将代码提交至微信开放平台,生成体验版供测试。在微信公众平台提交审核,审核通过后,手动发布至线上环境,用户即可搜索或扫码使用。
页面
下面是系统页面展示: