摘要
植物株型是影响玉米(Zea mays)种植密度和籽粒产量的关键因素。然而,不同遗传背景下植物株型的遗传机制尚未得到充分解析。在此,我们对10个与植物株型相关的性状进行了大规模表型分析,并在源自14种不同遗传背景的10个重组自交系群体中剖析了控制这些性状的遗传位点。我们鉴定出近800个具有主效和微效的数量性状位点(QTLs),它们对植物株型相关性状的表型变异有贡献。其中92%的QTLs仅在一个群体中被检测到,这证实了作图群体的遗传背景多样性以及玉米中稀有等位基因的普遍存在。QTLs的数量和效应与群体的表型变异呈正相关,而群体的表型变异又与亲本的表型和遗传变异呈正相关。有较大比例(38.5%)的QTLs与至少两个性状相关,这表明多效性位点或紧密连锁位点的频繁出现。先前在突变体研究中被证实影响植物株型的关键发育基因,被发现在许多QTLs的共定位区域。通过利用重组自交系群体中存在的残余杂合系所开发的分离群体,进一步验证了5个QTLs。此外,一个新的株高QTL,qPH3,已被精细定位到一个600kb的基因组区域,其中包含三个候选基因。这些结果为控制植物株型的遗传机制提供了见解,并将有助于玉米育种中理想植物株型的选择。
引文
玉米(Zea mays)是全球种植最广泛的谷物作物,已成为食品、动物饲料和生物能源生产中最重要的作物之一。在过去80年中,美国的玉米籽粒产量增长了8倍,其中一半归功于育种者的选育(Duvick,2005)。尽管每公顷高籽粒产量是主要的育种目标,但这些籽粒产量的增加主要是由于更高的种植密度(Duvick,2005)。在美国,玉米的平均种植密度从20世纪30年代的每公顷3万株增加到目前的每公顷超过8万株,这一变化伴随着玉米植株地上部结构的改变,尤其是玉米叶片夹角变得更加直立(Duvick,2005)。在高种植密度的玉米生产中,理想的植物株型可以优化群体结构,提高光合效率,并防止倒伏,从而实现整体高籽粒产量。
在这里,植物株型主要指玉米的地上部分。它是许多具体性状的综合体现,例如株高(PH)、穗位高(EH)、雄穗分枝数(TBN)、雄穗主轴长度(TMAL)、叶片长度(LL)、叶片宽度(LW)、中部叶片夹角(MLA)、穗上叶数(LNAE)、穗下叶数(LNBE)以及穗叶数(LN)等。随着育种者对种植密度的选育,叶片夹角、叶片大小以及雄穗大小和夹角等性状不断优化,使得光线能够穿透到地上部群体中,从而带来显著的产量优势(Pepper 等,1977;Fischer 等,1987;Begna 等,1999)。玉米植株的所有地上部分均源自茎顶端分生组织(SAM)及其衍生的花序分生组织。已有研究表明,茎顶端分生组织的维持和分化决定了植株地上部分的形态(Thompson 等,2015)。所有植物株型性状的发育起源解释了它们之间的高度相关性。以往对茎顶端分生组织的突变体研究表明,许多基因(尤其是同源盒基因)、它们之间的相互作用以及植物激素基因都参与了分生组织身份和分化的调控(Barton,2010)。因此,植物株型表现出数量性状变异,并具有复杂的遗传机制。尽管阐明这些性状的遗传基础仍具挑战性,但对植物株型的遗传剖析将有助于提高高种植密度下的产量育种,并从而推动玉米生产力的持续提升。
已有数百个与植物株型性状相关的数量性状位点(QTLs)被鉴定出来(http://www.maizegdb.org/data_center/qtl-loci-summary)。Tian等人(2011)在玉米嵌套关联作图(NAM)群体中对叶片结构进行了全基因组关联研究(GWAS),结果表明叶片性状的遗传基础主要由微效基因控制,并且很少表现出表型互作、环境互作或一因多效。Peiffer等人(2014)剖析了玉米NAM群体中玉米株高的遗传基础,揭示了玉米株高受强遗传控制,并具有高度多基因的遗传基础。Li等人(2016)利用玉米野生亲缘种——野生玉米的渐渗群体,对叶片数及其与开花时间的遗传关系进行了全面的遗传剖析,结果表明这些性状受到相对独立的遗传控制。诸如teosinte branched1(tb1)、teosinte glume architecture1(tga1)、dwarf plant3(dwarf3)、dwarf plant8(dwarf8)、dwarf plant9(dwarf9)、nana plant1(na1)和brachytic plant2(br2)等基因已被克隆,其对开花时间和株高的调控已在分子水平上得到了阐释(Winkler和Helentjaris,1995;Doebley等人,1997;Multani等人,2003;Wang等人,2005;Lawit等人,2010;Hartwig等人,2011)。然而,许多与植物株型相关的基因的功能等位基因已经在玉米优良种质中被固定,这限制了它们在玉米改良中的应用。以往的大多数遗传学研究主要集中在单一或少数几个植物株型性状上,缺乏对植物株型性状作为一个整体进行剖析的能力。Bouchet等人(2017)对24个相关的玉米性状的遗传基础进行了评估,并在一个包含336个系的群体中鉴定出植物株型性状的主要多效性效应和/或连锁关系,然而,这仅代表了玉米遗传多样性的很小一部分。尽管取得了这些进展,但在多个不同遗传背景下,玉米植物株型相关性状的遗传学研究仍未得到充分开展。
为了实现这一目标,我们构建了10个玉米重组自交系(RIL)群体,命名为随机开放亲本关联作图(ROAM)群体(Xiao等人,2016,2017),对10个植物株型性状进行了大规模表型分析,并对玉米株型进行了全面的遗传剖析。在玉米的10种不同遗传背景下,我们鉴定出大约800个具有主效和微效的QTLs。检测到多效性和连锁的QTLs在很大程度上解释了植物株型性状之间的高度相关性。对于每个玉米RIL群体,两个亲本之间在10个性状上的表型差异与群体内的表型多样性以及检测到的QTL数量相关,这表明孟德尔效应在后代的表型变异中起主导作用。此外,残余杂合系(RHL)家族分析验证了5个QTLs,并将一个株高QTL精细定位到600kb的基因组区域,证实了我们分析的稳健性。所有这些结果进一步加深了我们对植物株型变异的理解,并为实现理想玉米株型的选择提供了定位依据。
结果与讨论
大规模表型分析揭示了玉米植物株型相关性状之间的复杂关系
随机开放亲本关联作图(ROAM)群体由14个优良玉米自交系衍生的10个重组自交系(RIL)群体组成,共计1887个RIL系(Pan等人,2016;Xiao等人,2016)。这14个优良玉米自交系是从一个大型关联作图群体中筛选出来的,表现出广泛的遗传多样性(Yang等人,2011;补充图S1)。我们在5到12个地点对ROAM群体的10个地上部性状进行了表型分析,这些性状包括株高(PH)、穗位高(EH)、雄穗分枝数(TBN)、雄穗主轴长度(TMAL)、叶片长度(LL)、叶片宽度(LW)、中部叶片夹角(MLA)、穗上叶数(LNAE)、穗下叶数(LNBE)和穗叶数(LN),所有测量均为手工完成(图1A;见“材料与方法”)。最佳线性无偏预测(BLUP)分析显示了广泛的表型变异(图1B;补充表S1)。所有10个性状均呈正态分布,在RIL群体中,最小值和最大值之间存在2到10倍的差异(图1B;补充表S1;补充图S2)。雄穗分枝数(TBN)表现出最显著的变异,相差10倍(最小和最大的雄穗分枝数分别为2和20;图1B;补充表S1)。雄穗大小是与玉米籽粒产量密切相关的一个关键因素(Duvick,2005)。较小的雄穗通常与更高的产量相关,但如果雄穗过小,可能会对杂交种生产产生不利影响(Hunter等人,1969)。ROAM群体中TBN的显著变异可能允许对最佳雄穗大小进行灵活的选择。叶片夹角的变异程度位居第二,约为4倍,而其他8个性状的表型变异均小于3倍(图1B;补充表S1)。与此同时,所有10个植物株型相关性状的广义遗传力在0.9到0.95之间(表I),显著高于籽粒产量相关性状的遗传力(0.76–0.87)(Xiao等人,2016)。广泛的表型变异和高遗传力表明,这10个RIL群体具有多样化的遗传背景,适合用于剖析玉米植物株型相关性状的遗传因素。
植物株型表现出数量性状变异,这种变异对环境变化十分敏感。即使是对于某一特定基因型,由于遗传变异(例如新突变)和环境变化的共同作用,植物个体仍可能表现出广泛的表型变异(Zhang,2008;Fraser和Schadt,2010)。尽管植物株型性状具有较高的遗传力,但表型变异的一部分仍来源于环境效应。所有10个植物株型性状的表型变异中,环境效应的贡献率在2.2%到13.3%之间(补充表S2)。此外,还观察到了显著的基因型与环境互作效应(补充表S2)。
分析表明,10个植物株型相关性状之间显著相关,每个性状与其他1到6个性状相关(图1C;补充表S3)。我们在10个性状之间共检测到45个相关性,其中大多数(43个)为正相关,除了叶片长度(LL)与叶片宽度(LW)或穗下叶数(LNBE)之间的两个相关性(图1C;补充表S3)。我们基于10个重组自交系(RIL)群体的表型变异进行了表型聚类分析(图1D)。基于聚类分析构建了包含所有10个植物株型性状的表型树(见“材料与方法”),结果表明植物株型性状之间存在高度相关性以及广泛的表型变异。这一分析将10个植物株型性状分为三个无根类群(图1D)。最大的类群包括8个测量性状:株高(PH)、穗位高(EH)、叶片长度(LL)、叶片宽度(LW)、穗叶数(LN)、穗上叶数(LNAE)、穗下叶数(LNBE)和雄穗主轴长度(TMAL)。玉米植株的所有地上部分均源自茎顶端分生组织(SAM)及其衍生的花序分生组织(Barton,2010)。近期研究揭示了分生组织形态与成株性状之间的表型相关性,揭示了未分化植物器官与分化植物器官之间的联系(Thompson等人,2015)。此外,Baute等人(2015)发现整个茎顶端分生组织性状与成熟植株形态相关性状之间存在相关性。所有地上形态性状的相似起源可能是将这8个性状归为一个高度相关的表型类群的发育因素。
特别值得关注的是,在聚类分析中,中部叶片夹角(MLA)和雄穗分枝数(TBN)是独立的单个性状,这表明与最大类群中的性状相比,这两个性状可能对植物株型有独特的遗传贡献。有趣的是,这两个性状在作图群体中也表现出最大的表型变异。随着种植密度的增加,叶片变得更加直立,雄穗分枝数(TBN)显著减少,以优化光线穿透植物冠层,这表明TBN和MLA是玉米改良过程中的重要选择目标。
这10个重组自交系(RIL)群体的大部分亲本来自不同育种计划的优良自交系。TBN和MLA表现出最大的表型变异,反映了我们作图群体的遗传多样性。这两个性状广泛的、连续的表型变异及其与主要表型类群的分离表明,在玉米中,许多不同的位点和稀有等位基因各自对TBN和MLA的变异贡献较小。
材料与方法
群体和表型
在之前的研究中,我们构建了一个随机开放亲本关联作图(ROAM)群体,该群体由10个重组自交系(RIL)群体组成,这些群体源自14个具有多样性的优良玉米自交系(Zea mays;Pan等人,2016;Xiao等人,2016)。这些群体包括B73×BY804、BY815×KUI3、DAN340×K22、DE3×BY815、K22×BY815、K22×CI7、KUI3×B77、YU87-1×BK、ZHENG58×SK和ZONG3×YU87-1。其中,B73×BY804、KUI3×B77、K22×CI7、DAN340×K22、ZHENG58×SK、YU87-1×BK和ZONG3×YU87-1这7个群体于2011年和2012年种植于12个地点,包括湖北省(东经114°17′,北纬30°35′)、四川省(东经104°04′,北纬30°40′)、广西壮族自治区(东经108°19′,北纬22°48′)、重庆市(东经106°33′,北纬29°35′)、河南省(东经113°40′,北纬34°46′)、云南省(东经102°42′,北纬25°04′)和海南省(东经109°31′,北纬18°14′)。另外三个群体DE3×BY815、K22×BY815和BY815×KUI3于2012年种植于5个地点,包括湖北、重庆、河南、云南和海南。在每个地点,来自一个RIL群体的RIL随机排列,每行种植12株同一RIL的植株。每行中间的5株植株被选为每个RIL的表型分析对象。所有群体在2011年和2012年均进行了表型分析。总共测量了10个与植物株型相关的性状,包括株高(PH,单位:厘米)、穗位高(EH,单位:厘米)、雄穗分枝数(TBN,单位:个数)、雄穗主轴长度(TMAL,单位:厘米)、穗上叶数(LNAE,单位:个数)、穗下叶数(LNBE,单位:个数)、穗叶数(LN,单位:个数)、叶片长度(LL,单位:厘米)、叶片宽度(LW,单位:厘米)和中部叶片夹角(MLA,单位:度)(补充图S2)。在测量LNAE和LNBE时,我们将最顶端的果穗视为分界点,无论主茎上有多少果穗。我们将最顶端果穗上方和下方的叶片数分别计为LNAE和LNBE。为了准确测量表型变异,我们使用R软件包lme4中的lme函数,将两年内13个和5个地点的所有原始表型数据转换为10个植物株型性状的最佳线性无偏预测(BLUP)值。同样使用R软件包lme4中的lme函数计算了10个植物株型性状的遗传力。所有分析,包括表型聚类、相关性和方差分析(ANOVA),均基于BLUP表型数据值。
基因分型与作图
Illumina MaizeSNP50 BeadChip 是一种包含56,110个SNP的芯片,用于鉴定重组bin,并为所有10个重组自交系(RIL)群体构建超高分辨率遗传图谱。此外,从一个多样化的关联作图群体中选取了14个具有多样性的优良自交系(Yang等人,2010, 2011),并在授粉后15天对籽粒进行RNA-seq实验,生成了数十万个SNP标记。利用ROAM群体的重组bin和超高密度连锁图谱,对玉米株型的遗传因素进行剖析,具体方法如下:
-
单群体连锁作图(SLM):采用Winqtlcart 2.5软件,结合连锁图谱和BLUP表型数据进行QTL作图。使用复合区间作图法(cim),通过1000次置换检验获得10个性状的95% LOD阈值,范围为2.89到3.53,平均值为3。如果基因组区域的LOD值超过3,则定义为一个QTL,其置信区间覆盖从峰值下降1个LOD值的基因组区域。
-
联合连锁作图(JLM):基于10个RIL群体的联合分析和BLUP表型数据进行。通过以下公式估计ROAM基因型与表型之间的关系:
y = X b + Z g + j + ϵ y = Xb + Zg + j + \epsilon y=Xb+Zg+j+ϵ
其中,(y)是包含1887个个体的ROAM群体的表型;(X)是群体表型的均值;(Z)是1887×14的单倍型基因型矩阵(14为亲本数量);(g)是目标SNP的遗传效应向量。采用似然比检验(LRT)检测每个单倍型bin的表型关联显著性,通过500次置换检验确定LRT值的阈值,最终LRT阈值为2.76。
-
基于超高密度基因分型数据的全基因组关联分析(GWAS):利用RNA-seq衍生的高密度SNP基因型数据,将亲本的基因型投影到1887个系的重组/单倍型bin上,生成用于后续GWAS的超高密度基因分型数据。主要步骤为逐步回归:从整个ROAM群体中随机抽取80%的系作为子样本进行GWAS扫描,重复100次。通过重采样模型包含概率评估模型中SNP的稳健性,定义重采样模型包含概率的P值阈值为0.05。
所有三种方法的详细描述可参考Xiao等人(2016)的研究。
Analysis of Epistasis
基于上述通过单群体连锁作图(SLM)、联合连锁作图(JLM)和全基因组关联分析(GWAS)获得的所有显著QTL或位点,我们提取了每个QTL的峰值LOD分数对应的位点。对于单一位点,我们使用R环境中的双因素方差分析(ANOVA)对每对峰值位点进行表型互作分析。P值小于0.05被认为显著,并根据总检验次数进行校正,以检测显著的表型互作。结合所有显著单一位点和双位点互作的基因型信息,我们使用R语言中的线性模型(lm)来估计它们对表型变异的贡献(Yu等人,1997)。
亲本变异与子代多样性相关性的估计
为了理解植物株型性状的遗传多样性来源,我们对10个玉米重组自交系(RIL)群体的10个植物株型性状进行了全面的相关性分析,涉及亲本表型变异(PPV)、亲本遗传变异(PGV)、子代表型变异(STV)、QTL数量(QN)和QTL解释的表型变异比例(QPV)。具体如下:
-
亲本表型变异(PPV):所有10个地上部性状的PPV是通过群体中两个亲本之间的表型绝对差异计算得出的,公式为:
[
\text{PPV} = |\text{P1} - \text{P2}|
]
其中,P1和P2分别为RIL群体中父本和母本的表型值。 -
亲本遗传变异(PGV):基于高密度标记估算的遗传多样性,计算了所有亲本组合之间的遗传关系。这些高密度标记数据由我们实验室先前生成。
-
QTL数量(QN)和QTL解释的表型变异比例(QPV):QN基于单群体连锁作图(SLM)的结果获得(补充表S3)。QPV通过整合SLM中所有显著QTL,并使用R语言的线性模型(lm)函数计算,以表示某一特定性状的表型变异比例。
-
变量标准化:为了使不同变量具有可比性,我们使用以下公式对每个变量进行调整:
[
Y = \frac{X - \text{mean}(X)}{\text{mean}(X)}
]
其中,X为PPV、PGV、STV、QN和QPV的原始值,Y为调整后的值,mean(X)为X的平均值。
此外,基于SLM结果,我们还总结了10个RIL群体中父本和母本对QN和表型效应的正向贡献。本节的所有统计分析均使用R软件完成。
植物株型性状QTL重叠的剖析
为了检测多效性QTL(pleiotropic QTLs),我们采用了两种方法。
(1) 使用单群体连锁作图(SLM),我们比较了不同性状的QTL置信区间,以计算重叠QTL的数量。
(2) 我们将基因组划分为滑动的2-Mb区间,如果某个特定的基因组区间内至少存在两个不同性状的SLM QTL峰值,则将其定义为多效性位点。
为了测试不同性状之间的多效性效应,我们基于SLM QTL信息,使用以下公式估计它们之间的关系:
[
P = \frac{\binom{l}{m} \times \binom{n-l}{m-s}}{\binom{n}{s}}
]
其中,(n) 是QTL的数量,计算为基因组总物理长度除以平均QTL区间(在本研究中,平均QTL置信区间为2 Mb,因此(n)等于1031);(m) 是通过本节方法(2)计算的两个性状之间重叠的QTL数量;(l) 是可检测到更多QTL的性状的QTL数量(QN);(s) 是通过SLM检测到较少QTL的性状的QTL数量(QN)。
为了系统地剖析不同植物株型性状之间的遗传重叠,我们基于上述P值转换的距离构建了植物株型性状的系统发育树。具体而言,我们使用R软件包ape和phangorn进行系统发育树分析,利用nj函数通过邻接法(neighbor-joining method)重新估计遗传关系。
构建玉米所有植物株型性状的表型聚类树
对于10个表型性状的1887个子代家系,我们首先使用以下公式调整不同性状的表型范围,以使不同性状具有可比性:
[
Y = \frac{X - \text{mean}(X)}{\text{mean}(X)}
]
其中,(X)是10个性状的原始表型值,(Y)是转换后的值,用于后续分析。基于转换后的(Y)值,我们对10个植物株型性状进行了相关性分析。
其次,我们使用R环境中基于欧几里得方法的dist
函数,结合转换后的表型值计算它们之间的距离。所有性状对之间的欧几里得距离公式为:
[
Y_{mn} = \sqrt{\sum_{k=1}^{10} (X_{mk} - X_{nk})^2}
]
其中,(Y_{mn})是性状(m)和性状(n)(从10个测量性状中选择)之间的欧几里得距离值,(X)是转换后的表型值。基于10个性状对之间的表型距离,我们使用hclust
函数构建了层次聚类,称为表型聚类树关系。
此外,为了剖析所有10个植物株型性状表型聚类树关系的遗传基础,我们分析了10个植物株型性状的表型距离、多效性QTL的数量(见上文)以及多效性QTL的效应(多效性QTL能够解释的表型变异比例)之间的关系。多效性QTL的效应计算为多效性QTL除以总QTL效应值。基于表型距离、多效性QTL数量和多效性QTL效应,我们使用R语言的lm
函数,通过以下公式估计它们之间的关系:
[
Y = aX + b
]
其中,(Y)是表型距离,(X)是多效性QTL数量或效应,(a)和(b)是评估参数。对于回归公式,我们还计算了回归系数和P值。
利用残余杂合系(RHLs)验证QTL
为了验证作图结果,我们随机选取了5个QTL进行验证。这些QTL包括:
- 在DE33×BY815群体中,位于第3染色体161959511-166378535位置的qPH3,影响株高(PH);
- 在DE33×BY815群体中,位于第3染色体172477014-176570244位置的qTMAL3,影响雄穗主轴长度(TMAL);
- 在SK×ZHENG58群体中,位于第1染色体98297572-116455713位置的qPH1,影响株高(PH);
- 在K22×BY815群体中,位于第7染色体126535776-130704819位置的qPH7,影响株高(PH);
- 在K22×BY815群体中,位于第3染色体173803352-178006685位置的qTBN3,影响雄穗分枝数(TBN)。
基于高密度连锁图谱,我们从数据库中识别出残余杂合系(RHLs)(Liu等人,2016),并于2015年在中国武汉种植。我们设计并使用了KASP标记进行RHLs的基因分型。在每个目标QTL区域,我们识别出5个纯合携带不同亲本等位基因的RHL系。对每个RHL家系进行了精确的表型分析,并通过方差分析(ANOVA)计算和比较不同等位基因纯合系之间的表型差异。如果目标QTL区域两种不同纯合基因型之间的表型变异显著(P≤0.05),则初步验证该QTL。引物信息见补充表S10。
qPH3的精细定位及基于多组学的候选基因挖掘
在DE3/BY815群体中,我们在第3染色体上鉴定到一个影响株高(PH)的主要QTL——qPH3,其解释的表型变异(R²)大于15%。为了精细定位该QTL,我们选取了残余杂合系(RHLs)。首先,我们开发了新的标记以验证该QTL的存在,方法如上所述。随后,我们进一步开发了更多的KASP标记,并在2015年和2016年鉴定并测试了该区域中带有重组交叉的额外RHLs。这将目标基因组区域缩小至600kb。
随后,我们对带有和不带有600kb基因组替换的RHLs的幼苗叶片进行了RNA-seq分析。使用Tophat 2.0(Kim等人,2013)将RNA-seq读段默认参数下比对到玉米参考基因组AGPv2(www.maizesequence.org;Schnable等人,2009),并利用Cufflinks(Trapnell等人,2010)计算了带有和不带有600kb目标基因组替换的RHLs中所有可检测基因的每千碱基外显子模型每百万比对读段数(RPKM)。我们鉴定了带有和不带有600kb目标基因组替换的RHLs之间的差异表达基因。
此外,我们利用包含505个自交系的中国多样化关联作图群体(Yang等人,2010, 2011, 2014;Li等人,2013a)对qPH3的目标基因组区域进行了关联作图,该群体中有103万个SNP标记进行了基因分型。进一步地,我们分析并比较了ROAM群体所有14个亲本中600kb基因组区域内所有候选基因的单倍型。此外,我们为ROAM群体所有14个亲本中的16个候选基因设计了引物,用于扩增基因编码序列区域、5’端上游2kb和3’端下游1kb的区域。PCR产物经过Sanger测序以鉴定基因组变异,并进行单倍型分析以确定候选基因。
综合精细定位、RNA-seq分析、候选基因关联作图和单倍型比较的结果,我们提出了候选基因。精细定位的引物信息见补充表S11。
补充数据
以下补充材料可供参考:
-
补充图S1:我们ROAM群体中14个亲本的遗传多样性。
-
补充图S2:玉米10个重组自交系(RIL)群体中10个植物株型性状的表型变异。
-
补充图S3:玉米株高(PH)的QTL结果概述。
-
补充图S4:玉米穗位高(EH)的QTL结果概述。
-
补充图S5:玉米雄穗主轴长度(TMAL)的QTL结果概述。
-
补充图S6:玉米雄穗分枝数(TBN)的QTL结果概述。
-
补充图S7:玉米穗上叶数(LNAE)的QTL结果概述。
补充图表和表格 -
补充图S8:玉米穗下叶数(LNBE)的QTL结果概述。
-
补充图S9:玉米穗叶数(LN)的QTL结果概述。
-
补充图S10:玉米叶片长度(LL)的QTL结果概述。
-
补充图S11:玉米叶片宽度(LW)的QTL结果概述。
-
补充图S12:玉米中部叶片夹角(MLA)的QTL结果概述。
-
补充图S13:通过单群体连锁作图(SLM)方法对所有10个植物株型性状的QTL效应(R²)分布。
-
补充图S14:玉米中所有10个植物株型性状的QTL数量(R² > 10%)。
-
补充图S15:单群体连锁作图(SLM)、联合群体连锁作图(JLM)和全基因组关联分析(GWAS)方法的作图分辨率比较。
-
补充图S16:所有显著GWAS SNP解释的表型变异。
-
补充图S17:通过SLM、JLM和GWAS方法鉴定的一致性QTL数量。
-
补充图S18:亲本表型变异(PPV)、亲本遗传变异(PGV)、子代表型均值变异、子代表型变异(STV)、QTL数量(QN)和QTL解释的表型变异比例(QPV)之间的关系。
-
补充图S19:多效性QTL的分布。
-
补充图S20:基于QTL作图结果的不同植物株型性状的系统发育树。
- 补充表S1:玉米10个重组自交系(RIL)群体中10个植物株型性状的表型变异。
- 补充表S2:环境效应和基因型与环境互作对玉米植物株型性状表型变异的影响。
- 补充表S3:玉米ROAM群体中10个植物株型性状之间的相关性。
- 补充表S4:通过单群体连锁分析鉴定的所有10个植物株型性状的详细QTL信息。
- 补充表S5:通过联合群体连锁分析鉴定的所有10个植物株型性状的详细QTL信息。
- 补充表S6:通过全基因组关联分析鉴定的所有10个植物株型性状的显著SNP。
- 补充表S7:QTL与已知功能基因的重合情况。
- 补充表S8:精细定位QTL qPH3的三个候选基因(GRMZM2G058250、GRMZM2G177227和GRMZM2G177220)的详细多态性信息。
- 补充表S9:精细定位QTL qPH3的600kb区域内其他候选基因的详细多态性信息。
- 补充表S10:在残余杂合系(RHLs)中验证五个QTL的详细标记信息。
- 补充表S11:精细定位QTL qPH3的详细标记信息。