一、官方baseline分析
1.RNAModel类的forward方法中,展示了在得到序列特征的tensor表示后的处理步骤:
def forward(self, x):
# 将输入序列传入嵌入层
embedded = [self.embedding(seq) for seq in x]
outputs = []
...
2.那么我们怎么能得到这个唯一标识呢?我们首先需要把序列给进行分词,siRNA_antisense_seq的分词策略是3个一组(GenomicTokenizer的ngram和stride都取3)进行token拆分,由此我们可以从整个数据集构建出一个词汇表,他负责token到唯一标识(索引)的映射:
# 创建词汇表
all_tokens = []
for col in columns:
for seq in train_data[col]:
if ' ' in seq: # 修饰过的序列
all_tokens.extend(seq.split())
else:
all_tokens.extend(tokenizer.tokenize(seq))
vocab = GenomicVocab.create(all_tokens, max_vocab=10000, min_freq=1)
3.有了这个词汇表,我们就可以
(1)来获得序列的最大长度
max_len = max(max(len(seq.split()) if ' ' in seq else len(tokenizer.tokenize(seq))
for seq in train_data[col]) for col in columns)
(2)- 在loader获取样本的时候把token转为索引
def __getitem__(self, idx):
# 获取数据集中的第idx个样本
row = self.df.iloc[idx] # 获取第idx行数据
# 对每一列进行分词和编码
seqs = [self.tokenize_and_encode(row[col]) for col in self.columns]
if self.is_test:
# 仅返回编码后的序列(测试集模式)
return seqs
else:
# 获取目标值并转换为张量(仅在非测试集模式下)
target = torch.tensor(row['mRNA_remaining_pct'], dtype=torch.float)
# 返回编码后的序列和目标值
return seqs, target
def tokenize_and_encode(self, seq):
if ' ' in seq: # 修饰过的序列
tokens = seq.split() # 按空格分词
else: # 常规序列
tokens = self.tokenizer.tokenize(seq) # 使用分词器分词
# 将token转换为索引,未知token使用0(<pad>)
encoded = [self.vocab.stoi.get(token, 0) for token in tokens]
# 将序列填充到最大长度
padded = encoded + [0] * (self.max_len - len(encoded))
# 返回张量格式的序列
return torch.tensor(padded[:self.max_len], dtype=torch.long)
二、RNN模型分析
1.上面已经得到了数据的张量化表示,此时就要把它输入模型了。
class SiRNAModel(nn.Module):
def __init__(self, vocab_size, embed_dim=200, hidden_dim=256, n_layers=3, dropout=0.5):
super(SiRNAModel, self).__init__()
# 初始化嵌入层
self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
# 初始化GRU层
self.gru = nn.GRU(embed_dim, hidden_dim, n_layers, bidirectional=True, batch_first=True, dropout=dropout)
# 初始化全连接层
self.fc = nn.Linear(hidden_dim * 4, 1) # hidden_dim * 4 因为GRU是双向的,有n_layers层
# 初始化Dropout层
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 将输入序列传入嵌入层
embedded = [self.embedding(seq) for seq in x]
outputs = []
# 对每个嵌入的序列进行处理
for embed in embedded:
x, _ = self.gru(embed) # 传入GRU层
x = self.dropout(x[:, -1, :]) # 取最后一个隐藏状态,并进行dropout处理
outputs.append(x)
# 将所有序列的输出拼接起来
x = torch.cat(outputs, dim=1)
# 传入全连接层
x = self.fc(x)
# 返回结果
return x.squeeze()
三、数据的特征工程
提交官方baseline后得分不佳,或因特征简单、序列构造粗糙、数据量不足。接下来,分享如何将序列特征转为表格问题,并介绍表格数据的特征工程技巧。
1.处理类别型变量
如何知道一个变量是类别型的呢,只需看下其值的分布,或者唯一值的个数。如果相较于数据的总行数很少,那么其很可能就是类别变量了,比如gene_target_symbol_name。此时,我们可以使用get_dummie函数来实现one-hot特征的构造。
# 如果有40个类别,那么会产生40列,如果第i行属于第j个类别,那么第j列第i行就是1,否则为0
df_gene_target_symbol_name = pd.get_dummies(df.gene_target_symbol_name)
df_gene_target_symbol_name.columns = [
f"feat_gene_target_symbol_name_{c}" for c in df_gene_target_symbol_name.columns
]
2.可能的时间特征构造
siRNA_duplex_id_values = df.siRNA_duplex_id.str.split("-|\.").str[1].astype("int")
3.包含某些单词
df_cell_line_donor = pd.get_dummies(df.cell_line_donor)
df_cell_line_donor.columns = [
f"feat_cell_line_donor_{c}" for c in df_cell_line_donor.columns
]
# 包含Hepatocytes
df_cell_line_donor["feat_cell_line_donor_hepatocytes"] = (
(df.cell_line_donor.str.contains("Hepatocytes")).fillna(False).astype("int")
)
# 包含Cells
df_cell_line_donor["feat_cell_line_donor_cells"] = (
df.cell_line_donor.str.contains("Cells").fillna(False).astype("int")
)
4.根据序列模式提取特征
四、基于lightgbm的baseline
1.在得到了表格数据之后,我们可以使用任意适用于表格数据的机器学习回归模型来进行预测,此处我们简单使用了lightgbm模型:
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
def print_validation_result(env):
result = env.evaluation_result_list[-1]
print(f"[{env.iteration}] {result[1]}'s {result[0]}: {result[2]}")
params = {
"boosting_type": "gbdt",
"objective": "regression",
"metric": "root_mean_squared_error",
"max_depth": 7,
"learning_rate": 0.02,
"verbose": 0,
}
gbm = lgb.train(
params,
train_data,
num_boost_round=15000,
valid_sets=[test_data],
callbacks=[print_validation_result],
)
说明:本文仅为个人学习笔记,仅供读者参考。代码、文字部分来源官方数据,如有侵权请联系删除。

被折叠的 条评论
为什么被折叠?



