动态规划-最长公共子序列

关于动态规划问题的题目我们已经介绍了很多,现在我们将介绍动态规划领域的另一个经典题目:最长公共子序列(Longest Common Subsequence, LCS)。此后我们还会介绍一些如本题这样有两个字符串的问题。

 题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。 两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例:

输入:text1 = "abcdef", text2 = "ace"

输出:3

解释:最长公共子序列是 "ace" ,它的长度为 3 。

动态规划思路

  1. 定义一个二维数组 dp:其中 dp[i][j] 表示 text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列的长度。之后我们介绍的很多2个串的题,大部分都是dp[i][j] 分别表示 a 串前 i 个字符和 b 串前 j 个字符怎么怎么样。

  2. 初始化

    • 当 i = 0 或 j = 0 时,dp[i][j] = 0。因为没有字符时,最长公共子序列的长度为 0。
  3. 状态转移方程

    • 如果 text1[i-1] == text2[j-1](注意字符串索引从 0 开始,但这里比较的是当前位置之前的字符):
      dp[i][j]=dp[i−1][j−1]+1
      表示两个字符串的当前字符相同,最长公共子序列长度增加 1。
    • 如果 text1[i-1] != text2[j-1]
      dp[i][j]=max(dp[i−1][j],dp[i][j−1])
      表示两个字符串的当前字符不同,最长公共子序列的长度等于不选择当前字符时的两个子问题的最大值。
  4. 遍历顺序

    • 外层循环遍历 text1 的长度,内层循环遍历 text2 的长度。
  5. 结果

    • dp[len(text1)][len(text2)] 就是最长公共子序列的长度。

代码示例 

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n = text1.size();
        int m = text2.size();
        vector<vector<int>> dp(n, vector<int>(m, 0));
        // dp[i][j]: t1[0~i],t2[0~j]两个子串的最长 公共子序列 的长度
        for (int i = 0; i < n; i++) { // 处理第一列以及第一行
            if (text1[i] == text2[0])
                dp[i][0] = 1;
            if (text1[i] != text2[0] && i > 0)
                dp[i][0] = dp[i - 1][0];
        }

        for (int j = 0; j < m; j++) {
            if (text1[0] == text2[j])
                dp[0][j] = 1;
            if (text1[0] != text2[j] && j > 0)
                dp[0][j] = dp[0][j - 1];
        }

        for (int i = 1; i < n; i++) {
            for (int j = 1; j < m; j++) {
                if (text1[i] == text2[j]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[n - 1][m - 1];
    }
};

此段代码示例与上面解题思路中的解法有一点差别。

代码步骤解析

  1. 初始化动态规划数组
    • 创建一个 n 行 m 列的二维数组 dp,其中 n 和 m 分别是 text1 和 text2 的长度。所有元素初始化为 0。
  2. 初始化第一行和第一列
    • 遍历 text1 的每个字符,如果它与 text2 的第一个字符相同,则 dp[i][0] 设置为 1(表示 text1 的前 i 个字符与 text2 的第一个字符之间的最长公共子序列长度为 1)。如果不同,且 i 大于 0,则 dp[i][0] 继承 dp[i-1][0] 的值(因为最长公共子序列可能不包含 text1 的当前字符)。
    • 类似地,遍历 text2 的每个字符,更新 dp[0][j] 的值。
  3. 填充 dp 数组
    • 对于 dp 数组的其余部分(即 i > 0 且 j > 0 的情况),根据当前字符是否相等来决定 dp[i][j] 的值:
      • 如果 text1[i] == text2[j],则 dp[i][j] 等于左上角元素 dp[i-1][j-1] 加 1(表示包含当前字符的最长公共子序列长度)。
      • 如果 text1[i] != text2[j],则 dp[i][j] 等于其上方元素 dp[i-1][j] 和左方元素 dp[i][j-1] 中的较大值(表示不包含当前字符的最长公共子序列长度)。
  4. 返回结果
    • 最后,dp[n-1][m-1] 存储了 text1 和 text2 的最长公共子序列的长度,返回该值即可。
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值