题记
1.Coze
以下是我结合智能体学习,deepseek,csdn,哔哩哔哩的一些理解
📌 Coze 是什么?
Coze 是字节跳动(ByteDance)推出的 AI Bot 开发平台,允许用户快速构建、训练和部署 AI 聊天机器人(Bot),而无需编写复杂代码,并且包含有很多免费的ai模板,对于一个新手而且是很友好的,主要体现在以下四点,入门无需任何编程基础,当前最强的LLM编排平台,目前完全免费,但未来一定会收费,具有极高的商业价值
。它基于大语言模型(如 GPT、字节自研模型等),支持自然语言交互、插件扩展、知识库增强、多平台发布等功能。
核心特点:
✅ 零代码/低代码:可视化配置,无需编程经验
✅ 多模型支持:可选用不同 AI 模型(如 GPT-4、云雀等)
✅ 知识库增强:上传文档(PDF/TXT/Excel等)让 Bot 更专业
✅ 插件系统:联网搜索、代码执行、数据库查询等
✅ 多平台发布:可部署到飞书、微信、Discord、Telegram等
📌 Coze 能做什么?
1. 快速搭建 AI 问答 Bot
-
客服机器人(自动回答常见问题)
-
知识库助手(基于上传的文档回答专业问题)
-
娱乐聊天 Bot(陪聊、讲故事、玩文字游戏)
2. 复杂任务处理(结合插件)
-
天气查询(联网获取实时数据)
-
股票/新闻查询(调用 API)
-
代码解释/运行(Python 等)
3. 多平台集成
-
飞书、微信、Discord、网页端等直接使用
📌 Coze vs 其他 AI Bot 平台(如 GPTs、LangChain)
特性 | Coze | OpenAI GPTs | LangChain(自建) |
---|---|---|---|
是否需要代码 | ❌ 无代码 | ❌ 无代码 | ✅ 需要 Python |
知识库支持 | ✅ 直接上传文档 | ✅ 可上传文件 | ✅ 需手动处理 |
插件生态 | ✅ 官方+自定义插件 | ✅ 有限插件 | ✅ 高度灵活 |
多平台发布 | ✅ 一键发布 | ❌ 仅限 ChatGPT | ✅ 需自行部署 |
适合人群 | 小白/企业/开发者 | 普通用户 | 开发者/工程师 |
👉 Coze 优势:
-
比 GPTs 更开放(支持更多平台发布)
-
比 LangChain 更简单(无需写代码)
-
适合国内用户(字节生态,中文优化好)
2.搭建的智能体
使用coze搭建一个专门帮助软件工程学生面试笔试的智能体
这里我主要用的是知识库来进行搭建的智能体,没有添加其他图像识别之类的模块!
3.总结
1.使用coze搭建智能体的看法和思考
首先就是,我以为搭建智能体至少要写一些代码引入一些依赖,或者api密钥什么的才能用之类的,而且还要运行项目,这是我之前以为的,现在才发现是这么方便的。
零代码:通过可视化界面配置知识库、插件、工作流
即时部署:一键发布到飞书/微信,无需服务器
成本极低:目前完全免费,企业级需求也能快速验证(只不过现在只有500点资源免费使用)
Coze是"快速原型工具",适合MVP验证,但复杂逻辑仍需传统开发,需要人力来编写代码,这个Coze如果想要在更大的项目中运用的话,更考验程序员的理解和编写运用能力,但是相比之前,可能颠覆传统客服/内部知识系统开发流程,可以节省90%成本,把之前很多复杂繁琐的地方简单化了。AI平民化的标志,像当年"人人能建网站"一样,未来"人人能造AI助手"一样了,虽然只限于简单的智能体构建,在当前时代也很适用了,使用更要求我们程序员们走ai道路,争取不被ai替代!
2.技巧总结
1.知识库优化技巧
分模块:上传文档之类的,可以用关键字,标记段落,区分模块,避免读取碎片化!
2.提示词(Prompt)设计
设定角色:一开始就告诉ai你是什么样的人,要什么样的资料,并且添加限制,防止给出偏离逻辑的答案。
"你是一名专业的跨境电商客服,回答时需简洁友好,所有商品信息以知识库为准"
"如果问题超出知识库范围,必须回答:'该问题需人工协助,已为您转接'"
3.工作流(Workflow)高级用法
人工接管:设置"转人工"触发词,自动生成工单(可对接飞书审批)
多条件分支:
WHEN 用户问"价格" → 调用商品数据库插件
WHEN 用户问"售后" → 检索知识库《退换货政策》
4.插件组合策略
实时数据:
天气查询 = 联网插件 + 地理位置提取(NLP)
股票报价 = 第三方API插件 + 公司名称映射表
风险控制:敏感词过滤插件 + 自动记录违规日志
5.发布渠道的隐藏技巧
飞书机器人:绑定到内部群聊,设置@Bot自动触发
网页嵌入:通过iframe嵌入公司官网(需自定义UI)
3.智能体与其他ai的联系
智能体,大模型,知识库之间的联系
在智能体和人工智能领域,知识库(Knowledge Base)、智能体(Agent)和大模型(Large Model)是三个关键概念,它们之间的关系既互补又协同。以下是对它们的定义和联系的详细解释:
通过Coze实践,我理解的三者的基本技术栈关系:
[用户输入]
→ 大模型(理解意图/生成草稿)
→ 知识库(检索精准数据)
→ 智能体(组合结果+调用插件)
→ [输出回答]
-
大模型是"大脑":
优势:理解模糊语义、生成自然语言
短板:知识滞后、缺乏领域深度
-
知识库是"记忆":提供准确、可追溯的领域知识
优势:提供最新、结构化知识(如产品手册、法规)
短板:无法直接理解自然语言提问
-
智能体是"肢体":协调工具使用和业务流程
优势:协调工具调用(API/插件)、控制流程
与其他AI应用的横向对比
工具 | 核心优势 | 适合场景 | Coze对比优势 |
---|---|---|---|
ChatGPT | 通用对话能力强 | 个人娱乐/灵感激发 | Coze支持知识库+多平台发布 |
LangChain | 高度自定义开发 | 复杂AI系统开发 | Coze开发速度快10倍 |
钉钉AI | 企业IM深度集成 | 内部办公自动化 | Coze模型选择更灵活 |
技术栈 | 代表工具 | 与智能体生态的关系 |
---|---|---|
RAG框架 | LlamaIndex | Coze知识库本质是简化版RAG实现 |
低代码平台 | Zapier/Make | Coze=低代码+大模型,但专注对话场景 |
AutoML | Google Vertex AI | 大模型微调功能未来可能整合到Coze企业版 |
未来的AI应用开发,不再是"从头训练模型",而是如何用智能体技术整合大模型、知识库和工具链。Coze这样的平台正在降低门槛,但理解三者协同原理的人,才能设计出真正高效的AI解决方案。