#%% md # 0. 要解决的问题 #%% md 案例描述:将学习如何建立逻辑回归分类器用来识别猫。 note: 1. 这项作业将引导你逐步了解神经网络的思维方式,同时磨练你对深度学习的直觉。 2. 除非指令中明确要求使用,否则请勿在代码中使用循环(for / while)。 建立学习算法的一般架构,包括: 1. 初始化参数 2. 计算损失函数及其梯度 3. 使用优化算法(梯度下降) 这项作业按正确的顺序将以上所有三个功能集成到一个主模型上。 #%% md # 1. 导入包 #%% md ① numpy 是Python科学计算的基本包。 ② h5py是一个常用的包,可以处理存储为H5文件格式的数据集。 ③ matplotlib是一个著名的Python图形库。 ④ lr_utils是一个加载资料包里面的数据的简单功能的库。 #%% import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage from lr_utils import load_dataset import scipy.misc %matplotlib inline #%% md # 2. 导入数据集 #%% md ① 问题说明:你将获得一个包含以下内容的数据集("data.h5"): 1. 标记为cat(y = 1)或非cat(y = 0)的m_train训练图像集 2. 标记为cat或non-cat的m_test测试图像集 3. 图像维度为(num_px,num_px,3),其中3表示3个通道(RGB)。因此,每个图像都是正方形(高度= num_px)和(宽度= num_px)。 首先通过运行以下代码来加载数据。 note:我们在图像数据集(训练和测试)的末尾添加了"\_orig",以便对其进行预处理。 预处理后,我们将得到train_set_x和test_set_x(标签train_set_y和test_set_y不需要任何预处理)。 #%% train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() #%% md ② 解释一下上面的load_dataset() 返回的值的含义: 1. train_set_x_orig :保存的是训练集里面的图像数据(本训练集有209张64x64的图像)。 2. train_set_y_orig :保存的是训练集的图像对应的分类值(【0 | 1】,0表示不是猫,1表示是猫)。 3. test_set_x_orig :保存的是测试集里面的图像数据(本测试集有50张64x64的图像)。 4. test_set_y_orig : 保存的是测试集的图像对应的分类值(【0 | 1】,0表示不是猫,1表示是猫)。 5. classes : 保存的是以bytes类型保存的两个字符串数据,数据为:[b’non-cat’ b’cat’]。 #%% md # 3. 查看图片数据 #%% md ① train_set_x_orig和test_set_x_orig的每一行都是代表图像的数组。 你可以通过运行以下代码来可视化示例。 还可以随意更改index值并重新运行以查看其他图像。 #%% # Example of a picture # 打印出当前的训练标签值 # 使用np.squeeze的目的是压缩维度,【未压缩】train_set_y[:,index]的值为[1] , 【压缩后】np.squeeze(train_set_y[:,index])的值为1 # print("【使用np.squeeze:" + str(np.squeeze(train_set_y[:,index])) + ",不使用np.squeeze: " + str(train_set_y[:,index]) + "】") # 只有压缩后的值才能进行解码操作 index = 5 plt.imshow(train_set_x_orig[index]) print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.") #%% md # 4. 查看向量尺寸 #%% md ① 深度学习中的许多报错都来自于矩阵/向量尺寸不匹配。 如果你可以保持矩阵/向量的尺寸不变,那么将消除大多错误。 练习: 查找以下各项的值: 1. m_train(训练集示例数量) 2. m_test(测试集示例数量) 3. num_px(=训练图像的高度=训练图像的宽度) note:"train_set_x_orig" 是一个维度为(m_train,num_px,num_py,3)的numpy数组。 例如,你可以通过编写“ train_set_x_orig.shape [0]”来访问“ m_train”。 #%% m_train = train_set_x_orig.shape[0] # 训练集里图片的数量。 m_test = test_set_x_orig.shape[0] # 测试集里图片的数量。 num_px = train_set_x_orig.shape[1] # 训练集里图片的宽度 num_py = train_set_x_orig.shape[2] # 训练集里图片的宽度 # #看一看 加载的东西的具体情况 print ("Number of training examples: m_train = " + str(m_train)) print ("Number of testing examples: m_test = " + str(m_test)) print ("Height of each image: num_px = " + str(num_px)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_py) + ", 3)") print ("train_set_x shape: " + str(train_set_x_orig.shape)) # test_set_y_orig 为局部变量,返回赋给 train_set_y 了 print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x shape: " + str(test_set_x_orig.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) #%% md # 5. 重塑维度 #%% md ① 为了方便起见,你现在应该以维度(num_px * num_px * 3, 1)的numpy数组重塑维度(num_px,num_px,3)的图像。 ② 此后,我们的训练(和测试)数据集是一个numpy数组,其中每列代表一个展平的图像。 应该有m_train(和m_test)列。 练习: 重塑训练和测试数据集,以便将大小(num_px,num_px,3)的图像展平为单个形状的向量(num_px × num_px × 3, 1)。 ③ 当你想将维度为(a,b,c,d)的矩阵X展平为形状为(b * c * d, a)的矩阵X_flatten时的一个技巧是:X_flatten = X.reshape(X.shape [0],-1).T # 其中X.T是X的转置矩阵 #%% # X_flatten = X.reshape(X.shape [0],-1).T #X.T是X的转置 # 将训练集的维度降低并转置。 train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T # 将测试集的维度降低并转置。 test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T #%% md ① 这一段意思是指把数组变为209行的矩阵(因为训练集里有209张图片),但是我懒得算列有多少,于是我就用-1告诉程序你帮我算,最后程序算出来时12288列。 ② 我再最后用一个T表示转置,这就变成了12288行,209列。 ③ 测试集亦如此。 #%% # 看看降维之后的情况是怎么样的 print ("训练集降维最后的维度: " + str(train_set_x_flatten.shape)) print ("训练集_标签的维数: " + str(train_set_y.shape)) print ("测试集降维之后的维度: " + str(test_set_x_flatten.shape)) print ("测试集_标签的维数: " + str(test_set_y.shape)) #%% md # 6.标准化数据集 #%% md ① 为了表示彩色图像,必须为每个像素指定红色,绿色和蓝色通道(RGB),因此像素值实际上是从0到255范围内的三个数字的向量。 ② 机器学习中一个常见的预处理步骤是对数据集进行居中和标准化,这意味着可以减去每个示例中整个numpy数组的平均值,然后将每个示例除以整个numpy数组的标准偏差。 ③ 但对于图片数据集,它更简单,更方便,几乎可以将数据集的每一行除以255(像素通道的最大值),因为在RGB中不存在比255大的数据,所以我们可以放心的除以255,让标准化的数据位于[0,1]之间。 ④ 现在标准化我们的数据集: #%% train_set_x = train_set_x_flatten/255 test_set_x = test_set_x_flatten/255 #%% md ![image.png](attachment:image.png) #%% md # 7. 预处理数据集 #%% md ① 预处理数据集的常见步骤是: 1. 找出数据的尺寸和维度(m_train,m_test,num_px等) 2. 重塑数据集,以使每个示例都是大小为(num_px * num_px * 3,1)的向量 3. “标准化”数据 #%% md # 8. 建立神经网络 #%% md ## 8.1 建立神经网络数学模型 #%% md ① 现在总算是把我们加载的数据弄完了,我们现在开始构建神经网络。 ② 对于 $x^{(i)}$ $z^{(i)} = w^T x^{(i)} + b \tag{1}$ $\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})\tag{2}$ $\mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})\tag{3}$ ③ 然后通过对所有训练样例求和来计算成本: $J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})\tag{4}$ #%% md ## 8.2 建立神经网络主要步骤 #%% md ① 建立神经网络的主要步骤是: 1. 定义模型结构(例如输入特征的数量) 2. 初始化模型的参数 3. 循环: - 3.1 计算当前损失(正向传播) - 3.2 计算当前梯度(反向传播) - 3.3 更新参数(梯度下降) #%% md ## 8.3 建立神经网络各个部分 #%% md ### 8.3.1 建立sigmoid()函数 #%% md ① 计算$sigmoid( w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$去预测,需要使用np.exp()。 #%% def sigmoid(z): """ 参数: z - 任何大小的标量或numpy数组。 返回: s - sigmoid(z) """ s = 1 / (1 + np.exp(-z)) return s #%% md ② 测试一下sigmoid(),检查一下是否符合我们所需要的条件。 #%% # 测试一下 sigmoid 函数 print("====================测试sigmoid====================") print ("sigmoid(0) = " + str(sigmoid(0))) print ("sigmoid(9.2) = " + str(sigmoid(9.2))) print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2])))) #%% md ### 8.3.2 建立initialize()函数 #%% md 练习:在下面的单元格中实现参数初始化。 1. 你必须将w初始化为零的向量。 2. 如果你不知道要使用什么numpy函数,请在Numpy库的文档中查找np.zeros()。 #%% def initialize_with_zeros(dim): """ 此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。 参数: dim - 我们想要的w矢量的大小(或者这种情况下的参数数量) 返回: w - 维度为(dim,1)的初始化向量。 b - 初始化的标量(对应于偏差) """ w = np.zeros((dim, 1)) b = 0 #使用断言来确保我要的数据是正确的 # w 的维度是 (dim,1) assert(w.shape == (dim, 1)) # b 的类型是 float 或者是 int assert(isinstance(b, float) or isinstance(b, int)) return w, b dim = 2 w, b = initialize_with_zeros(dim) print ("w = " + str(w)) print ("b = " + str(b)) #%% md ### 8.3.3 建立propagate()函数 #%% md ① 初始化参数的函数已经构建好了,现在就可以执行“前向”和“后向”传播来学习参数。 ② 我们现在要实现函数propagate()来计算损失函数及其梯度。 #%% md ③ 正向传播: 1. 获得X 2. 计算$A = \sigma(w^T X + b) = (a^{(0)}, a^{(1)}, ..., a^{(m-1)}, a^{(m)})$ 3. 计算损失函数:$J = -\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log(a^{(i)})+(1-y^{(i)})\log(1-a^{(i)})$ ④ 计算梯度,你将要使用到以下两个公式: $\frac{\partial J}{\partial w} = \frac{1}{m}X(A-Y)^T\tag{5}$ $\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)})\tag{6}$ #%% def propagate(w, b, X, Y): """ 实现前向和后向传播的传播函数,计算成本函数及其梯度。 参数: w - 权重,大小不等的数组(num_px * num_px * 3,1) b - 偏差,一个标量 X - 矩阵类型为(num_px * num_px * 3,训练数量) Y - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量) 返回: cost- 逻辑回归的负对数似然成本 dw - 相对于w的损失梯度,因此与w相同的形状 db - 相对于b的损失梯度,因此与b的形状相同 """ m = X.shape[1] # 正向传播 # 计算激活函数 A = sigmoid(np.dot(w.T, X) + b) # 计算成本 cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A)) # compute cost # 反向传播 dw = 1 / m * np.dot(X, (A - Y).T) db = 1 / m * np.sum(A - Y) #使用断言确保我的数据是正确的 assert(dw.shape == w.shape) assert(db.dtype == float) cost = np.squeeze(cost) assert(cost.shape == ()) # 创建一个字典,把 dw 和 db 保存起来。 grads = {"dw": dw, "db": db} return grads, cost #%% # 测试一下 propagate 函数 print("====================测试propagate====================") w, b, X, Y = np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]]) grads, cost = propagate(w, b, X, Y) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) print ("cost = " + str(cost)) #%% md ### 8.3.4 建立optimize()函数 #%% md ① 现在,我要使用渐变下降更新参数。 ② 目标是通过最小化成本函数$J$来学习$w$和$b$。 ③ 对于参数$\theta$,更新规则是$ \theta = \theta - \alpha \text{ } d\theta$,其中$\alpha$是学习率。 #%% def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): """ 此函数通过运行梯度下降算法来优化w和b 参数: w - 权重,大小不等的数组(num_px * num_px * 3,1) b - 偏差,一个标量 X - 维度为(num_px * num_px * 3,训练数据的数量)的数组。 Y - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量) num_iterations - 优化循环的迭代次数 learning_rate - 梯度下降更新规则的学习率 print_cost - 每100步打印一次损失值 返回: params - 包含权重w和偏差b的字典 grads - 包含权重和偏差相对于成本函数的梯度的字典 成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。 提示: 我们需要写下两个步骤并遍历它们: 1)计算当前参数的成本和梯度,使用propagate()。 2)使用w和b的梯度下降法则更新参数。 """ costs = [] for i in range(num_iterations): grads, cost = propagate(w, b, X, Y) dw = grads["dw"] db = grads["db"] w = w - learning_rate * dw b = b - learning_rate * db # 记录成本 if i % 100 == 0: costs.append(cost) # 每 100 次训练 打印成本 if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) params = {"w": w, "b": b} grads = {"dw": dw, "db": db} return params, grads, costs #%% #测试一下 optimize 函数 print("====================测试optimize====================") params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) print ("w = " + str(params["w"])) print ("b = " + str(params["b"])) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) print(costs) #%% md ### 8.3.5 建立predict()函数 #%% md ① optimize函数会输出已学习的w和b的值,我们可以使用w和b来预测数据集X的标签。 ② 现在我们要实现预测函数predict()。计算预测有两个步骤: 1. 计算$\hat{Y} = A = \sigma(w^T X + b)$ 2. 将a的项转换为0(如果激活<= 0.5)或1(如果激活> 0.5),并将预测结果存储在向量“ Y_prediction”中。 #%% def predict(w, b, X): """ 使用学习逻辑回归参数 logistic(w,b) 预测标签是0还是1, 参数: w - 权重,大小不等的数组(num_px * num_px * 3,1) b - 偏差,一个标量 X - 维度为(num_px * num_px * 3,训练数据的数量)的数据 返回: Y_prediction - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量) """ # 图片的数量 m = X.shape[1] Y_prediction = np.zeros((1,m)) w = w.reshape(X.shape[0], 1) # 预测猫在图片中出现的概率 A = sigmoid(np.dot(w.T, X) + b) for i in range(A.shape[1]): # 将概率 a[0,i] 转换为实际预测 p[0,i] if A[0, i] <= 0.5: Y_prediction[0, i] = 0 else: Y_prediction[0, i] = 1 # 使用断言 assert(Y_prediction.shape == (1,m)) return Y_prediction #%% # 测试一下 predict 函数 print("====================测试predict====================") w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]]) print("predictions = " + str(predict(w, b, X))) #%% md # 9. 功能合并模型中 #%% md ## 9.1 搭建模型 #%% md ① 就目前而言,我们基本上把所有的东西都做完了,现在我们要把这些函数统统整合到一个model()函数中,届时只需要调用一个model()就基本上完成所有的事了。 ② 将所有构件(在上一部分中实现的功能)以正确的顺序放在一起,从而得到整体的模型结构。 #%% def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False): """ 通过调用之前实现的函数来构建逻辑回归模型 参数: X_train - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集 Y_train - numpy的数组,维度为(1,m_train)(矢量)的训练标签集 X_test - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集 Y_test - numpy的数组,维度为(1,m_test)的(向量)的测试标签集 num_iterations - 表示用于优化参数的迭代次数的超参数 learning_rate - 表示optimize()更新规则中使用的学习速率的超参数 print_cost - 设置为true以每100次迭代打印成本 返回: d - 包含有关模型信息的字典。 """ # 初始化全零参数 w, b = initialize_with_zeros(X_train.shape[0]) # 梯度下降 parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost) # 从“parameters”字典中检索参数w和b w = parameters["w"] b = parameters["b"] # 预测测试/训练集的例子 Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train) # 打印训练后的准确性 print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b, "learning_rate" : learning_rate, "num_iterations": num_iterations} return d #%% md ## 9.2 训练模型 #%% md ① 把整个model构建好之后我们这就算是正式的实际测试了,我们这就来实际跑一下。 #%% print("====================测试model====================") # 这里加载的是真实的数据 d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True) #%% md ② 训练准确性接近100%。这是一个很好的情况。 ③ 测试误差为70%。考虑到我们使用的数据集很小,并且逻辑回归是线性分类器,对于这个简单的模型来说,这实际上还不错。下周你将建立一个更好的分类器! ④ 我们更改一下学习率和迭代次数,有可能会发现训练集的准确性可能会提高,但是测试集准确性会下降,这是由于过拟合造成的,但是我们并不需要担心,我们以后会使用更好的算法来解决这些问题的。 #%% md ## 9.3 预测模型 #%% md ① 使用下面的代码(并更改index变量),你可以查看测试集图片上的预测。 #%% index = 26 plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3))) print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[int(d["Y_prediction_test"][0,index])].decode("utf-8") + "\" picture.") #%% md ## 9.4 绘制损失 #%% md ① 到目前为止,我们的程序算是完成了,但是,我们可以在后面加一点东西,比如画点图什么的。 ② 跑一波出来的效果图是这样的,可以看到损失下降,它显示参数正在被学习。 #%% costs = np.squeeze(d['costs']) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(d["learning_rate"])) plt.show() #%% md ## 9.5 迭代次数的选择 #%% md ① 尝试增加上面单元格中的迭代次数,然后重新运行这些单元格。你可能会看到训练集准确性提高了,但是测试集准确性却降低了。这称为过度拟合。 ② 我们以后会使用更好的算法来解决过拟合问题的。 #%% md ## 9.6 学习率的选择 #%% md ① 让我们进一步分析一下,并研究学习率的可能选择。 ② 为了让渐变下降起作用,我们必须明智地选择学习速率。 ③ 学习率 $\alpha$ 决定了我们更新参数的速度。 1. 如果学习率过高,我们可能会“超过”最优值。 2. 如果它太小,我们将需要太多迭代才能收敛到最佳值。 ④ 这就是为什么使用良好调整的学习率至关重要的原因。 #%% md ⑤ 我们可以比较一下我们模型的学习曲线和几种学习速率的选择。也可以尝试使用不同于我们初始化的learning_rates变量包含的三个值,并看一下会发生什么。 ⑥ 解释: 1. 不同的学习率会带来不同的损失,因此会有不同的预测结果。 2. 如果学习率太大(0.01),则成本可能会上下波动。 它甚至可能会发散(尽管在此示例中,使用0.01最终仍会以较高的损失值获得收益)。 3. 较低的损失并不意味着模型效果很好。当训练精度比测试精度高很多时,就会发生过拟合情况。 4. 在深度学习中,我们通常建议你: - 选择好能最小化损失函数的学习率。 - 如果模型过度拟合,请使用其他方法来减少过度拟合。 (我们将在后面的教程中讨论。) #%% learning_rates = [0.01, 0.001, 0.0001] models = {} for i in learning_rates: print ("learning rate is: " + str(i)) models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False) print ('\n' + "-------------------------------------------------------" + '\n') for i in learning_rates: plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])) plt.ylabel('cost') plt.xlabel('iterations') legend = plt.legend(loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('0.90')
神经网络实现
最新推荐文章于 2024-11-06 19:12:31 发布