线性代数之相似矩阵、二次型

目录

相似矩阵及二次型的相关知识【第五部分 相似矩阵及二次型】:

【主要内容】

相似矩阵

实对称矩阵

性质

运用​编辑

代码示例

合同​

二次型​

化二次型为标准型

用配方法

用正交变换法化二次型为标准形的步骤:(将实对称矩阵对角化)

用线性替换

正定二次型的定义及其判定方法

【要求】

相关代码的运用:

相似矩阵

二次型


相似矩阵及二次型的相关知识【第五部分 相似矩阵及二次型】:

【主要内容】

相似矩阵

1、向量的内积长度夹角等概念及其计算方法。

2、向量的正交关系及正交向量组的含义。

3、施密特正交化方法。

4、方阵的特征值与特征向量的概念及其计算方法。

(1)特征值求法:解特征方程;

(2)特征向量的求法:求方程组的基础解系。

(3)特征值的性质:

5、相似矩阵的定义与性质( 相似, 有相同的特征值)。注意正交相似的性质!!

6、判断矩阵是否可以对角化以及对角化的步骤,找到可逆矩阵P使得为对角矩阵。

实对称矩阵

        实对称矩阵是一个特殊的方阵,其特点是矩阵与其转置相等。也就是说,如果 A 是一个 n×n 的实对称矩阵,那么对于所有 i 和 j,都有 aij=ajiaij​=aji​。这表明矩阵沿着主对角线是对称的。

性质
  1. 特征值:实对称矩阵的所有特征值都是实数。
  2. 特征向量:属于不同特征值的特征向量是正交的。此外,每个实对称矩阵都可以被一组标准正交的特征向量所对角化。
  3. 对角化:存在一个正交矩阵 PP (即 P−1=PTP−1=PT),使得 PTAPPTAP 是一个对角矩阵,这意味着实对称矩阵可以被相似变换为对角矩阵。
  4. 正定性:实对称矩阵可以是正定的、半正定的、不定的等。如果所有主子式的行列式都大于零,则该矩阵是正定的;如果所有主子式的行列式非负,则它是半正定的。

运用
代码示例
import numpy as np

# 创建一个3x3的对称矩阵
A = np.array([[4, 1, 0],
              [1, 2, 2],
              [0, 2, 3]])

print("Matrix A:")
print(A)

# 计算矩阵A的特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(A)

print("\nEigenvalues:")
print(eigenvalues)

print("\nEigenvectors:")
print(eigenvectors)

  上述代码创建一个实对称矩阵,并找到它的特征值和特征向量

合同

二次型

化二次型为标准型

配方法

  用正交变换法化二次型为标准形的步骤:(将实对称矩阵对角化)

(1)写出二次型的矩阵 (2)求出所有特征值 (3)解方程组,求对应于特征值的特征向量 (4)若特征向量组不正交,则先将其正交化,再单位化,得标准正交的向量组,记,对二次型做正交变换 ,即得二次型的标准形

线性替换

化成标准型之后,系数只有1,-1和0。

其中:正惯性指数:为1的个数;负惯性指数:为-1的个数;符号差:为正惯性指数-负惯性指数

正定二次型的定义及其判定方法

常用判定二次型正定的方法:

(1)定义法:系数都大于零,主对角线元素都大于零

(2)特征值全大于零

(3)顺序主子式全大于零

【要求】

1、掌握向量的内积、长度、夹角,正交向量组的性质,会利用施密特正交化方法线性无 关向量组为正交向量组。

2、掌握方阵特征值、特征向量的概念、求法。

3、了解相似矩阵的概念、掌握化对称矩阵为对角矩阵的方法。

4、掌握二次型的概念、会用正交变换化二次型为标准形。

5、知道正定二次型的概念及其判定方法。

相关代码的运用:

        在Python中,相似矩阵和二次型的应用通常涉及到线性代数和数值分析的领域。相似矩阵主要与矩阵的对角化相关,而二次型则常用于优化问题、统计分析以及机器学习中的特征选择等场景。

相似矩阵

        相似矩阵是指存在一个可逆矩阵P使得两个矩阵A和B满足关系 B = P^-1 * A * P。这在数学上意味着A和B有相同的特征值,且如果A是可对角化的,那么通过找到合适的P,我们可以将A转换为对角矩阵D,其中D的对角元素就是A的特征值。

        在Python中,可以使用numpyscipy库来处理矩阵的相似变换和对角化:

import numpy as np
from scipy.linalg import schur, eig

# 创建一个矩阵A
A = np.array([[1, 2], [3, 4]])

# 计算A的Schur分解,得到T(准对角形式)和Q(单位ary矩阵)
T, Q = schur(A)

# 检查是否相似
print(np.allclose(Q.T @ A @ Q, T))

# 计算A的特征值和特征向量
eigenvalues, eigenvectors = eig(A)
D = np.diag(eigenvalues)  # 对角矩阵
P = eigenvectors
# 检查是否相似
print(np.allclose(P.T @ A @ P, D))

二次型

        二次型是一个多项式函数,通常表示为 q(x) = x^T * A * x,其中x是一个向量,A是一个对称矩阵。在Python中,可以通过以下方式计算二次型的值:

import numpy as np

# 定义一个对称矩阵A
A = np.array([[2, 1], [1, 3]])

# 定义一个向量x
x = np.array([1, 2])

# 计算二次型的值
q_x = np.dot(x.T, np.dot(A, x))
print(q_x)

        在实际应用中,二次型常被用于最小二乘法、主成分分析(PCA)、岭回归等问题中。例如,在最小二乘法中,目标是最小化误差向量的二次范数,这可以视为一个二次型问题。

自我总结,还请指正

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ctrl+CV九段手

谢谢大佬的赏识!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值