【论文推荐】新能源电力系统灵活性供需量化及分布鲁棒优化调度

专题推荐论文推荐代码分享视角(点击即可跳转)

图片

摘要:电网中新能源渗透率的提升导致电力系统在局部时段灵活性严重不足。针对现有处理电力系统灵活性和供需不确定性过于保守或冒险的问题,提出一种数据驱动的分布鲁棒优化调度模型。首先,考虑风光出力的时空相关性,基于Copula理论构建出力集合。结合场景法与区间法对电力系统灵活性需求进行量化,引入灵活调节因子表征各类资源参与灵活性调节的能力,建立灵活性供需平衡约束。其次,考虑电动汽车等需求侧资源的灵活性供给能力,以灵活性资源运行成本与电网灵活性缺额惩罚成本最优作为目标函数,建立数据驱动的两阶段分布鲁棒模型。为降低保守性,采用综合范数对其概率分布进行约束,减小了灵活性需求出现极端情况的概率。针对两阶段鲁棒模型求解问题,利用零和博弈思想将模型解耦为主问题和子问题,采用列与约束生成算法进行迭代求解。最后,仿真算例表明,所提模型相比于传统不确定性模型对提高电力系统灵活性裕度与经济性具有积极作用。

关键词:供需平衡;需求侧灵活性;数据驱动;分布鲁棒优化调度;列与约束生成算法;

引用:童宇轩,胡俊杰,刘雪涛等.新能源电力系统灵活性供需量化及分布鲁棒优化调度[J].电力系统自动化,2023,47(15):80-90.

【代码分享】考虑灵活性供需平衡的电力系统优化调度模型(完美复现了确定性模型部分,没有DRO部分)

【论文推荐】新能源电力系统灵活性供需量化及分布鲁棒优化调度

本文提出一种考虑灵活性平衡的数据驱动DRO模型,通过对比仿真算例,得出以下结论。

1)基于DRO模型将区间法与场景法结合量化灵活性需求,可以充分考虑各场景下的净负荷波动。在灵活性供需平衡约束下,电动汽车、常规可转移负荷等负荷侧资源参与需求响应,可提供一定的爬坡容量,有效降低了净负荷的波动。考虑需求侧资源的灵活性供给能力后,电网的灵活性整体得到改善,特别是在爬坡需求较大的早晚高峰时段,灵活性裕度得到较大提升。在小幅降低经济性的基础上,保证了电力系统的灵活性。

2)数据驱动的DRO模型基于历史数据样本充分考虑了风光负荷波动的不确定性,当保守程度增加时,电网需要给予负荷侧资源更多的经济补偿,激励其进行需求响应,从而提供更多的灵活性,以满足恶劣的净负荷爬坡场景。同时,DRO模型不仅在日前调度阶段取得了经济性与鲁棒性的折中,而且在实时阶段有着更好的抵御不确定量波动风险的能力,总体经济性相比SO模型更好。

本文对于电力系统灵活性供需平衡的研究,主要分析了电源侧与负荷侧的灵活性供给能力,尚未考虑电力系统的网络约束对于灵活性的影响。有研究指出,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值