[蓝桥杯 2022 国 B] 卡牌(暴力 + 二分优化)

文章介绍了如何使用暴力模拟方法求解卡片填补问题,先暴力枚举每张卡片的最小填补次数,然后找到最少的牌数。接着,提出使用二分搜索优化,根据卡片套数和最大空白牌数判断是否可行,以减少计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        根据题目描述,我们可以知道每张牌可填补的数量有限制,因此我们可以用暴力模拟出过程,首先我们需要寻找出每张牌中最小的牌数,再将空白牌填补成该牌即可,最后我们再进行遍历,寻找出最少数量的牌,就是我们要找的答案

上代码

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std; 

const int N = 2e5 + 10;
int a[N], b[N];//分别记录有多少张牌,最多可以写多少张
int n, m;

int main(void)
{
	ios::sync_with_stdio(0);
	cin.tie(0); cout.tie(0);

	cin >> n >> m;
	for(int i = 1; i <= n; i++){
		cin >> a[i];
	}
	for(int i = 1; i <= n; i++){
		cin >> b[i];
	}
	for(int i = 1; i <= m; i++){//从第一张空白牌开始枚举
		int min1 = 0x3f3f3f3f;//初始化当前牌数最小值 
		int min_place = -1;//存储当前最小值的下标 
		for(int i = 1; i <= n; i++){
			if(min1 > a[i]){
				min1 
### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值