附录一 常见概率分布及相关公式

附一  几种常用的概率分布表

分布参数分布律或概率密度数学期望方差
(0-1)分布 0 < p < 1 0<p<1 0<p<1 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 P\{X=k\}=p^k(1-p)^{1-k},k=0,1 P{X=k}=pk(1p)1k,k=0,1 p p p p ( 1 − p ) p(1-p) p(1p)
二项分布 n ⩾ 1 0 < p < 1 n\geqslant1\\0<p<1 n10<p<1 P { X = k } = ( n k ) p k ( 1 − p ) n − k k = 0 , 1 , ⋯   , n \begin{aligned}P\{X=k\}&=\dbinom{n}{k}p^k(1-p)^{n-k}\\k&=0,1,\cdots,n\end{aligned} P{X=k}k=(kn)pk(1p)nk=0,1,,n n p np np n p ( 1 − p ) np(1-p) np(1p)
负二项分布
(巴斯卡分布)
r ⩾ 1 0 < p < 1 r\geqslant1\\0<p<1 r10<p<1 P { X = k } = ( k − 1 r − 1 ) p r ( 1 − p ) k − r k = r , r + 1 , ⋯ \begin{aligned}P\{X=k\}&=\dbinom{k-1}{r-1}p^r(1-p)^{k-r}\\k&=r,r+1,\cdots\end{aligned} P{X=k}k=(r1k1)pr(1p)kr=r,r+1, r p \cfrac{r}{p} pr r ( 1 − p ) p 2 \cfrac{r(1-p)}{p^2} p2r(1p)
几何分布 0 < p < 1 0<p<1 0<p<1 P { X = k } = p k − 1 ( 1 − p ) k = 0 , 1 , ⋯ \begin{aligned}P\{X=k\}&=p^{k-1}(1-p)\\k&=0,1,\cdots\end{aligned} P{X=k}k=pk1(1p)=0,1, 1 p \cfrac{1}{p} p1 1 − p p 2 \cfrac{1-p}{p^2} p21p
超几何分布 N , M , n ( M ⩽ N ) ( n ⩽ N ) N,M,n\\(M\leqslant N)\\(n\leqslant N) N,M,n(MN)(nN) P { X = k } = ( M k ) ( N − M n − k ) ( N k ) k 为整数 , max ⁡ { 0 , n − N + M } ⩽ k ⩽ min ⁡ { n , M } P\{X=k\}=\cfrac{\dbinom{M}{k}\dbinom{N-M}{n-k}}{\dbinom{N}{k}}\\k\text{为整数},\max\{0,n-N+M\}\leqslant k\leqslant\min\{n,M\} P{X=k}=(kN)(kM)(nkNM)k为整数,max{0,nN+M}kmin{n,M} n M N \cfrac{nM}{N} NnM n M N ( 1 − M N ) ( N − n N − 1 ) \cfrac{nM}{N}\left(1-\cfrac{M}{N}\right)\left(\cfrac{N-n}{N-1}\right) NnM(1NM)(N1Nn)
泊松分布 λ > 0 \lambda>0 λ>0 P { X = k } = λ k e − λ k ! k = 0 , 1 , 2 , ⋯ P\{X=k\}=\cfrac{\lambda^ke^{-\lambda}}{k!}\\k=0,1,2,\cdots P{X=k}=k!λkeλk=0,1,2, λ \lambda λ λ \lambda λ
均匀分布 a < b a<b a<b f ( x ) = { 1 b − a , a < x < b 0 , 其他 f(x)=\begin{cases}\cfrac{1}{b-a},&a<x<b\\0,&\text{其他}\end{cases} f(x)=ba1,0,a<x<b其他 a + b 2 \cfrac{a+b}{2} 2a+b ( b − a ) 2 12 \cfrac{(b-a)^2}{12} 12(ba)2
正态分布 μ σ > 0 \mu\\\sigma>0 μσ>0 f ( x ) = 1 2 π σ e − ( x − μ ) 2 / ( 2 σ 2 ) f(x)=\cfrac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/(2\sigma^2)} f(x)=2π σ1e(xμ)2/(2σ2) μ \mu μ σ 2 \sigma^2 σ2
Γ \Gamma Γ分布 α > 0 β > 0 \alpha>0\\\beta>0 α>0β>0 f ( x ) = { 1 β α Γ ( α ) x α − 1 e − x / β , x > 0 0 , 其他 f(x)=\begin{cases}\cfrac{1}{\beta^\alpha\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta},&x>0\\0,&\text{其他}\end{cases} f(x)=βαΓ(α)1xα1ex/β,0,x>0其他 α β \alpha\beta αβ α β 2 \alpha\beta^2 αβ2
指数分布
(负指数分布)
θ > 0 \theta>0 θ>0 f ( x ) = { 1 θ e − x / θ , x > 0 0 , 其他 f(x)=\begin{cases}\cfrac{1}{\theta}e^{-x/\theta},&x>0\\0,&\text{其他}\end{cases} f(x)=θ1ex/θ,0,x>0其他 θ \theta θ θ 2 \theta^2 θ2
χ 2 \chi^2 χ2分布 n ⩾ 1 n\geqslant1 n1 f ( x ) = { 1 2 n / 2 Γ ( n / 2 ) x n / 2 − 1 e − x / 2 , x > 0 0 , 其他 f(x)=\begin{cases}\cfrac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2},&x>0\\0,&\text{其他}\end{cases} f(x)=2n/2Γ(n/2)1xn/21ex/2,0,x>0其他 n n n 2 n 2n 2n
韦布尔分布 η > 0 β > 0 \eta>0\\\beta>0 η>0β>0 f ( x ) = { β η ( x η ) β − 1 e − ( x / η ) β , x > 0 0 , 其他 f(x)=\begin{cases}\cfrac{\beta}{\eta}\left(\cfrac{x}{\eta}\right)^{\beta-1}e^{-(x/\eta)^\beta},&x>0\\0,\text{其他}\end{cases} f(x)=ηβ(ηx)β1e(x/η)β,0,其他x>0 η Γ ( 1 β + 1 ) \eta\Gamma\left(\cfrac{1}{\beta}+1\right) ηΓ(β1+1) η { Γ ( 2 β + 1 ) − [ Γ ( 1 β + 1 ) ] 2 } \eta\left\{\Gamma\left(\cfrac{2}{\beta}+1\right)-\left[\Gamma\left(\cfrac{1}{\beta}+1\right)\right]^2\right\} ηΓ(β2+1)[Γ(β1+1)]2
瑞利分布 σ > 0 \sigma>0 σ>0 f ( x ) = { x σ 2 e − x 2 / ( 2 σ 2 ) , x > 0 0 , 其他 f(x)=\begin{cases}\cfrac{x}{\sigma^2}e^{-x^2/(2\sigma^2)},&x>0\\0,&\text{其他}\end{cases} f(x)=σ2xex2/(2σ2),0,x>0其他 π 2 σ \sqrt{\cfrac{\pi}{2}}\sigma 2π σ 4 − π 2 σ 2 \cfrac{4-\pi}{2}\sigma^2 24πσ2
β \beta β分布 α > 0 β > 0 \alpha>0\\\beta>0 α>0β>0 f ( x ) = { Γ ( α + β ) Γ ( α ) Γ ( β ) x α − 1 ( 1 − x ) β − 1 , 0 < x < 1 0 , 其他 f(x)=\begin{cases}\cfrac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1},&0<x<1\\0,&\text{其他}\end{cases} f(x)=Γ(α)Γ(β)Γ(α+β)xα1(1x)β1,0,0<x<1其他 α α + β \cfrac{\alpha}{\alpha+\beta} α+βα α β ( α + β ) 2 ( α + β + 1 ) \cfrac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} (α+β)2(α+β+1)αβ
对数
正态分布
μ σ > 0 \mu\\\sigma>0 μσ>0 f ( x ) = { 1 2 π σ x e − ( ln ⁡ x − μ ) 2 / ( 2 σ 2 ) , x > 0 0 , 其他 f(x)=\begin{cases}\cfrac{1}{\sqrt{2\pi}\sigma x}e^{-(\ln x-\mu)^2/(2\sigma^2)},&x>0\\0,&\text{其他}\end{cases} f(x)=2π σx1e(lnxμ)2/(2σ2),0,x>0其他 e μ + σ 2 2 e^{\mu+\frac{\sigma^2}{2}} eμ+2σ2 e 2 μ + σ 2 ( e σ 2 − 1 ) e^{2\mu+\sigma^2}(e^{\sigma^2}-1) e2μ+σ2(eσ21)
柯西分布 a λ > 0 a\\\lambda>0 aλ>0 f ( x ) = 1 π 1 λ 2 + ( x − a ) 2 f(x)=\cfrac{1}{\pi}\cfrac{1}{\lambda^2+(x-a)^2} f(x)=π1λ2+(xa)21不存在不存在
t t t分布 n ⩾ 1 n\geqslant1 n1 f ( x ) = Γ ( n + 1 2 ) n π Γ ( n / 2 ) ( 1 + x 2 n 2 ) − ( n + 1 ) / 2 f(x)=\cfrac{\Gamma\left(\cfrac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma(n/2)}\left(1+\cfrac{x^2}{n^2}\right)^{-(n+1)/2} f(x)=nπ Γ(n/2)Γ(2n+1)(1+n2x2)(n+1)/2 0 , n > 1 0,n>1 0,n>1 n n − 2 , n > 2 \cfrac{n}{n-2},n>2 n2n,n>2
F F F分布 n 1 , n 2 n_1,n_2 n1,n2 f ( x ) = { Γ [ ( n 1 + n 2 ) / 2 ] Γ ( n 1 / 2 ) Γ ( n 2 / 2 ) ( n 1 n 2 ) ( n 1 n 2 x ) n 1 / 2 − 1 ( 1 + n 1 n 2 x ) − ( n 1 + n 2 ) / 2 x > 0 0 , 其他 f(x)=\begin{cases}\cfrac{\Gamma[(n_1+n_2)/2]}{\Gamma(n_1/2)\Gamma(n_2/2)}\left(\cfrac{n_1}{n_2}\right)\left(\cfrac{n_1}{n_2}x\right)^{n_1/2-1}\\\left(1+\cfrac{n_1}{n_2}x\right)^{-(n_1+n_2)/2}&x>0\\0,&\text{其他}\end{cases} f(x)=Γ(n1/2)Γ(n2/2)Γ[(n1+n2)/2](n2n1)(n2n1x)n1/21(1+n2n1x)(n1+n2)/20,x>0其他 n 2 n 2 − 2 n 2 > 2 \cfrac{n_2}{n_2-2}\\n_2>2 n22n2n2>2 2 n 2 2 ( n 1 + n 2 − 2 ) n 1 ( n 2 − 2 ) 2 ( n 2 − 4 ) n 2 > 4 \cfrac{2n_2^2(n_1+n_2-2)}{n_1(n_2-2)^2(n_2-4)}\\n_2>4 n1(n22)2(n24)2n22(n1+n22)n2>4

附二  大数定律及中心极限定理

  1. 切比雪夫不等式:设随机变量 X X X具有数学期望 E ( X ) = μ E(X)=\mu E(X)=μ,方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2,则对于任意正数 ϵ \epsilon ϵ,不等式 P { ∣ X − μ ∣ ⩾ ϵ } ⩽ σ 2 ϵ 2 P\{|X-\mu|\geqslant\epsilon\}\leqslant\cfrac{\sigma^2}{\epsilon^2} P{Xμϵ}ϵ2σ2成立。
  2. 切比雪夫大数定律:设相互独立的随机变量 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,,分别具有数学期望 E ( X i ) = μ i E(X_i)=\mu_i E(Xi)=μi及方差 D ( X i ) = σ i 2 D(X_i)=\sigma^2_i D(Xi)=σi2,若存在参数 C C C,使 D ( X i ) ⩽ C , k = 1 , 2 , ⋯ D(X_i)\leqslant C,k=1,2,\cdots D(Xi)C,k=1,2,,则对于任意正数 ϵ \epsilon ϵ,不等式 lim ⁡ n → ∞ P { ∣ 1 n ∑ i − 1 n X i − 1 n ∑ i = 1 n μ i ∣ < ϵ } = 1 \lim\limits_{n\to\infty}P\left\{\left|\cfrac{1}{n}\sum^n\limits_{i-1}X_i-\cfrac{1}{n}\sum^n\limits_{i=1}\mu_i\right|<\epsilon\right\}=1 nlimP{n1i1nXin1i=1nμi<ϵ}=1成立。特别地,当 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,有相同的数学期望 μ \mu μ时,则有 lim ⁡ n → ∞ P { ∣ 1 n ∑ i − 1 n X i − μ ∣ < ϵ } = 1 \lim\limits_{n\to\infty}P\left\{\left|\cfrac{1}{n}\sum^n\limits_{i-1}X_i-\mu\right|<\epsilon\right\}=1 nlimP{n1i1nXiμ<ϵ}=1
  3. 辛钦大数定律(弱大数定律):设 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2,是相互独立,服从同一分布的随机变量序列,且具有数学期望 E ( X k ) = μ ( k = 1 , 2 , ⋯   ) E(X_k)=\mu(k=1,2,\cdots) E(Xk)=μ(k=1,2,)。做前 n n n个变量的算术平均 1 n ∑ k = 1 n X k \cfrac{1}{n}\sum^n\limits_{k=1}X_k n1k=1nXk,则对于任意 ϵ > 0 \epsilon>0 ϵ>0,有 lim ⁡ n → ∞ P { ∣ 1 n ∑ i − 1 n X i − μ ∣ < ϵ } = 1. \lim\limits_{n\to\infty}P\left\{\left|\cfrac{1}{n}\sum^n\limits_{i-1}X_i-\mu\right|<\epsilon\right\}=1. nlimP{n1i1nXiμ<ϵ}=1.
  4. 伯努利大数定律:设 f A f_A fA n n n次独立重复实验中事件 A A A发生的次数, p p p是事件 A A A在每次实验中发生的概率,则对于任意正数 ϵ > 0 \epsilon>0 ϵ>0,有 lim ⁡ n → ∞ P { ∣ f A n − p ∣ < ϵ } = 1 \lim\limits_{n\to\infty}P\left\{\left|\cfrac{f_A}{n}-p\right|<\epsilon\right\}=1 nlimP{nfAp<ϵ}=1 lim ⁡ n → ∞ P { ∣ f A n − p ∣ ⩾ ϵ } = 0. \lim\limits_{n\to\infty}P\left\{\left|\cfrac{f_A}{n}-p\right|\geqslant\epsilon\right\}=0. nlimP{nfApϵ}=0.
  5. 列维-林德伯格定理(独立同分布的中心极限定理):设随机变量 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,相互独立,服从同一分布,且具有数学期望和方差: E ( X k ) = μ , D ( X k ) = σ 2 > 0 ( k = 1 , 2 , ⋯   ) E(X_k)=\mu,D(X_k)=\sigma^2>0(k=1,2,\cdots) E(Xk)=μ,D(Xk)=σ2>0(k=1,2,),则随机变量之和 ∑ k = 1 n X k \sum^n\limits_{k=1}X_k k=1nXk的标准化变量 Y n = ∑ k = 1 n X k − E ( ∑ k = 1 n X k ) D ( ∑ k = 1 n X k ) = ∑ k = 1 n X k − n μ n σ Y_n=\cfrac{\sum^n\limits_{k=1}X_k-E(\sum^n\limits_{k=1}X_k)}{\sqrt{D(\sum^n\limits_{k=1}X_k)}}=\cfrac{\sum^n\limits_{k=1}X_k-n\mu}{\sqrt{n}\sigma} Yn=D(k=1nXk) k=1nXkE(k=1nXk)=n σk=1nXknμ的分布函数 F n ( x ) F_n(x) Fn(x)对于任意 x x x满足 lim ⁡ n → ∞ F n ( x ) = lim ⁡ n → ∞ P { ∑ k = 1 n X k − n μ n σ ⩽ x } = ∫ − ∞ x 1 2 π e − t 2 / 2 d t = Φ ( x ) . \begin{aligned}\lim\limits_{n\to\infty}F_n(x)&=\lim\limits_{n\to\infty}P\left\{\cfrac{\sum^n\limits_{k=1}X_k-n\mu}{\sqrt{n}\sigma}\leqslant x\right\}\\&=\displaystyle\int^x_{-\infty}\cfrac{1}{\sqrt{2\pi}}e^{-t^2/2}\mathrm{d}t=\varPhi(x).\end{aligned} nlimFn(x)=nlimPn σk=1nXknμx=x2π 1et2/2dt=Φ(x).
  6. 李雅普诺夫定理:设随机变量 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,相互独立,且具有数学期望和方差: E ( X k ) = μ k , D ( X k ) = σ k 2 > 0 ( k = 1 , 2 , ⋯   ) E(X_k)=\mu_k,D(X_k)=\sigma_k^2>0(k=1,2,\cdots) E(Xk)=μk,D(Xk)=σk2>0(k=1,2,)。记 B n 2 = ∑ k = 1 n σ k 2 B_n^2=\sum^n\limits_{k=1}\sigma_k^2 Bn2=k=1nσk2,若存在正数 δ \delta δ,使得当 n → ∞ n\to\infty n时, 1 B n 2 + δ ∑ k = 1 n E { ∣ X k − μ k ∣ 2 + δ } → 0 \cfrac{1}{B_n^{2+\delta}}\sum^n\limits_{k=1}E\{|X_k-\mu_k|^{2+\delta}\}\to0 Bn2+δ1k=1nE{Xkμk2+δ}0,则随机变量之和 ∑ k = 1 n X k \sum^n\limits_{k=1}X_k k=1nXk的标准化变量 Z n = ∑ k = 1 n X k − E ( ∑ k = 1 n X k ) D ( ∑ k = 1 n X k ) = ∑ k = 1 n X k − ∑ k = 1 n μ k B n Z_n=\cfrac{\sum^n\limits_{k=1}X_k-E(\sum^n\limits_{k=1}X_k)}{\sqrt{D(\sum^n\limits_{k=1}X_k)}}=\cfrac{\sum^n\limits_{k=1}X_k-\sum^n\limits_{k=1}\mu_k}{B_n} Zn=D(k=1nXk) k=1nXkE(k=1nXk)=Bnk=1nXkk=1nμk的分布函数 F n ( x ) F_n(x) Fn(x)对于任意 x x x满足 lim ⁡ n → ∞ F n ( x ) = lim ⁡ n → ∞ P { ∑ k = 1 n X k − ∑ k = 1 n μ k B n ⩽ x } = ∫ − ∞ x 1 2 π e − t 2 / 2 d t = Φ ( x ) . \begin{aligned}\lim\limits_{n\to\infty}F_n(x)&=\lim\limits_{n\to\infty}P\left\{\cfrac{\sum^n\limits_{k=1}X_k-\sum^n\limits_{k=1}\mu_k}{B_n}\leqslant x\right\}\\&=\displaystyle\int^x_{-\infty}\cfrac{1}{\sqrt{2\pi}}e^{-t^2/2}\mathrm{d}t=\varPhi(x).\end{aligned} nlimFn(x)=nlimPBnk=1nXkk=1nμkx=x2π 1et2/2dt=Φ(x).
  7. 棣莫弗-拉普拉斯定理:设随机变量 η n ( n = 1 , 2 , ⋯   ) \eta_n(n=1,2,\cdots) ηn(n=1,2,)服从参数为 n , p ( 0 < p < 1 ) n,p(0<p<1) n,p(0<p<1)的二项分布,则对于任意 x x x,有 lim ⁡ n → ∞ P { η n − n p n p ( 1 − p ) ⩽ x } = ∫ − ∞ x 1 2 π e − t 2 / 2 d t = Φ ( x ) . \lim\limits_{n\to\infty}P\left\{\cfrac{\eta_n-np}{\sqrt{np(1-p)}}\leqslant x\right\}=\displaystyle\int^x_{-\infty}\cfrac{1}{\sqrt{2\pi}}e^{-t^2/2}\mathrm{d}t=\varPhi(x). nlimP{np(1p) ηnnpx}=x2π 1et2/2dt=Φ(x).

附三  正态总体均值、方差的置信区间与单侧置信限(置信水平为 1 − α 1-\alpha 1α

  1. 一个正态总体:
待估参数其他参数枢轴量的分布置信区间单侧置信限
μ \mu μ σ 2 \sigma^2 σ2已知 Z = X ‾ − μ σ / n ∼ N ( 0 , 1 ) Z=\cfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1) Z=σ/n XμN(0,1) ( X ‾ ± σ n z α / 2 ) \left(\overline{X}\pm\cfrac{\sigma}{\sqrt{n}}z_{\alpha/2}\right) (X±n σzα/2) μ ‾ = X ‾ + σ n z α μ ‾ = X ‾ − σ n z α \overline{\mu}=\overline{X}+\cfrac{\sigma}{\sqrt{n}}z_\alpha\qquad\underline{\mu}=\overline{X}-\cfrac{\sigma}{\sqrt{n}}z_\alpha μ=X+n σzαμ=Xn σzα
μ \mu μ σ 2 \sigma^2 σ2未知 t = X ‾ − μ S / n ∼ t ( n − 1 ) t=\cfrac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1) t=S/n Xμt(n1) ( X ‾ ± S n t α / 2 ( n − 1 ) ) \left(\overline{X}\pm\cfrac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right) (X±n Stα/2(n1)) μ ‾ = X ‾ + S n t α ( n − 1 ) μ ‾ = X ‾ − S n t α ( n − 1 ) \overline{\mu}=\overline{X}+\cfrac{S}{\sqrt{n}}t_\alpha(n-1)\qquad\underline{\mu}=\overline{X}-\cfrac{S}{\sqrt{n}}t_\alpha(n-1) μ=X+n Stα(n1)μ=Xn Stα(n1)
σ 2 \sigma^2 σ2 μ \mu μ未知 χ 2 = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \chi^2=\cfrac{(n-1)S^2}{\sigma^2}\sim\chi^2(n-1) χ2=σ2(n1)S2χ2(n1) ( ( n − 1 ) S 2 χ α / 2 2 ( n − 1 ) , ( n − 1 ) S 2 χ 1 − α / 2 2 ( n − 1 ) ) \left(\cfrac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)},\cfrac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right) (χα/22(n1)(n1)S2,χ1α/22(n1)(n1)S2) σ 2 ‾ = ( n − 1 ) S 2 χ 1 − α 2 ( n − 1 ) σ 2 ‾ = ( n − 1 ) S 2 χ α 2 ( n − 1 ) \overline{\sigma^2}=\cfrac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}\qquad\underline{\sigma^2}=\cfrac{(n-1)S^2}{\chi^2_{\alpha}(n-1)} σ2=χ1α2(n1)(n1)S2σ2=χα2(n1)(n1)S2
  1. 两个正态总体:
待估参数其他参数枢轴量的分布置信区间单侧置信限
μ 1 − μ 2 \mu_1-\mu_2 μ1μ2 σ 1 2 , σ 2 2 \sigma_1^2,\sigma_2^2 σ12,σ22
已知
Z = X ‾ − Y ‾ − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) Z=\cfrac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{\sqrt{\cfrac{\sigma_1^2}{n_1}+\cfrac{\sigma_2^2}{n_2}}}\sim N(0,1) Z=n1σ12+n2σ22 XY(μ1μ2)N(0,1) ( X ‾ − Y ‾ ± z α / 2 σ 1 2 n 1 + σ 2 2 n 2 ) \left(\overline{X}-\overline{Y}\pm z_{\alpha/2}\sqrt{\cfrac{\sigma_1^2}{n_1}+\cfrac{\sigma_2^2}{n_2}}\right) XY±zα/2n1σ12+n2σ22 μ 1 − μ 2 ‾ = X ‾ − Y ‾ + z α σ 1 2 n 1 + σ 2 2 n 2 μ 1 − μ 2 ‾ = X ‾ − Y ‾ − z α σ 1 2 n 1 + σ 2 2 n 2 \overline{\mu_1-\mu_2}=\overline{X}-\overline{Y}+z_\alpha\sqrt{\cfrac{\sigma_1^2}{n_1}+\cfrac{\sigma_2^2}{n_2}}\\\underline{\mu_1-\mu_2}=\overline{X}-\overline{Y}-z_\alpha\sqrt{\cfrac{\sigma_1^2}{n_1}+\cfrac{\sigma_2^2}{n_2}} μ1μ2=XY+zαn1σ12+n2σ22 μ1μ2=XYzαn1σ12+n2σ22
μ 1 − μ 2 \mu_1-\mu_2 μ1μ2 σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2
未知
t = X ‾ − Y ‾ − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 t=\cfrac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{S_w\sqrt{\cfrac{1}{n_1}+\cfrac{1}{n_2}}}\sim t(n_1+n_2-2)\\S_w^2=\cfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} t=Swn11+n21 XY(μ1μ2)t(n1+n22)Sw2=n1+n22(n11)S12+(n21)S22 ( X ‾ − Y ‾ ± t α / 2 ( n 1 + n 2 − 2 ) S w 1 n 1 + 1 n 2 ) \left(\overline{X}-\overline{Y}\pm t_{\alpha/2}(n_1+n_2-2)S_w\sqrt{\cfrac{1}{n_1}+\cfrac{1}{n_2}}\right) XY±tα/2(n1+n22)Swn11+n21 μ 1 − μ 2 ‾ = X ‾ − Y ‾ + t α ( n 1 + n 2 − 2 ) S w 1 n 1 + 1 n 2 μ 1 − μ 2 ‾ = X ‾ − Y ‾ − t α ( n 1 + n 2 − 2 ) S w 1 n 1 + 1 n 2 \overline{\mu_1-\mu_2}=\overline{X}-\overline{Y}+t_\alpha(n_1+n_2-2)S_w\sqrt{\cfrac{1}{n_1}+\cfrac{1}{n_2}}\\\underline{\mu_1-\mu_2}=\overline{X}-\overline{Y}-t_\alpha(n_1+n_2-2)S_w\sqrt{\cfrac{1}{n_1}+\cfrac{1}{n_2}} μ1μ2=XY+tα(n1+n22)Swn11+n21 μ1μ2=XYtα(n1+n22)Swn11+n21
σ 1 2 σ 2 2 \cfrac{\sigma_1^2}{\sigma_2^2} σ22σ12 μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2
未知
F = S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F=\cfrac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) F=σ12/σ22S12/S22F(n11,n21) ( S 1 2 S 2 2 1 F α / 2 ( n 1 − 1 , n 2 − 1 ) , S 1 2 S 2 2 1 F 1 − α / 2 ( n 1 − 1 , n 2 − 1 ) ) \left(\cfrac{S_1^2}{S_2^2}\cfrac{1}{F_{\alpha/2}(n_1-1,n_2-1)},\cfrac{S_1^2}{S_2^2}\cfrac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right) (S22S12Fα/2(n11,n21)1,S22S12F1α/2(n11,n21)1) σ 1 2 σ 2 2 ‾ = S 1 2 S 2 2 1 F 1 − α ( n 1 − 1 , n 2 − 1 ) σ 1 2 σ 2 2 ‾ = S 1 2 S 2 2 1 F α ( n 1 − 1 , n 2 − 1 ) \overline{\cfrac{\sigma_1^2}{\sigma_2^2}}=\cfrac{S_1^2}{S_2^2}\cfrac{1}{F_{1-\alpha}(n_1-1,n_2-1)}\\\underline{\cfrac{\sigma_1^2}{\sigma_2^2}}=\cfrac{S_1^2}{S_2^2}\cfrac{1}{F_{\alpha}(n_1-1,n_2-1)} σ22σ12=S22S12F1α(n11,n21)1σ22σ12=S22S12Fα(n11,n21)1

正态总体均值、方差的检验法(显著性水平为 α \alpha α

原假设 H 0 H_0 H0检验统计量备选假设 H 1 H_1 H1拒绝域
1 1 1 μ ⩽ μ 0 μ ⩾ μ 0 μ = μ 0 ( σ 2 已知 ) \mu\leqslant\mu_0\\\mu\geqslant\mu_0\\\mu=\mu_0\\(\sigma^2\text{已知}) μμ0μμ0μ=μ0(σ2已知) Z = X ‾ − μ 0 σ / n Z=\cfrac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} Z=σ/n Xμ0 μ > μ 0 μ < μ 0 μ ≠ μ 0 \mu>\mu_0\\\mu<\mu_0\\\mu\ne\mu_0 μ>μ0μ<μ0μ=μ0 z ⩾ z α z ⩽ − z α ∣ z ∣ ⩾ z α / 2 z\geqslant z_\alpha\\z\leqslant-z_\alpha\\\vert z\vert\geqslant z_{\alpha/2} zzαzzαzzα/2
2 2 2 μ ⩽ μ 0 μ ⩾ μ 0 μ = μ 0 ( σ 2 未知 ) \mu\leqslant\mu_0\\\mu\geqslant\mu_0\\\mu=\mu_0\\(\sigma^2\text{未知}) μμ0μμ0μ=μ0(σ2未知) t = X ‾ − μ 0 S / n t=\cfrac{\overline{X}-\mu_0}{S/\sqrt{n}} t=S/n Xμ0 μ > μ 0 μ < μ 0 μ ≠ μ 0 \mu>\mu_0\\\mu<\mu_0\\\mu\ne\mu_0 μ>μ0μ<μ0μ=μ0 t ⩾ t α ( n − 1 ) t ⩽ − t α ( n − 1 ) ∣ t ∣ ⩾ t α / 2 ( n − 1 ) t\geqslant t_\alpha(n-1)\\t\leqslant-t_\alpha(n-1)\\\vert t\vert\geqslant t_{\alpha/2}(n-1) ttα(n1)ttα(n1)ttα/2(n1)
3 3 3 μ 1 − μ 2 ⩽ δ μ 1 − μ 2 ⩾ δ μ 1 − μ 2 = δ ( σ 1 2 , σ 2 2 已知 ) \mu_1-\mu_2\leqslant\delta\\\mu_1-\mu_2\geqslant\delta\\\mu_1-\mu_2=\delta\\(\sigma_1^2,\sigma_2^2\text{已知}) μ1μ2δμ1μ2δμ1μ2=δ(σ12,σ22已知) Z = X ‾ − Y ‾ − δ σ 1 2 n 1 + σ 2 2 n 2 Z=\cfrac{\overline{X}-\overline{Y}-\delta}{\sqrt{\cfrac{\sigma_1^2}{n_1}+\cfrac{\sigma_2^2}{n_2}}} Z=n1σ12+n2σ22 XYδ μ 1 − μ 2 > δ μ 1 − μ 2 < δ μ 1 − μ 2 ≠ δ \mu_1-\mu_2>\delta\\\mu_1-\mu_2<\delta\\\mu_1-\mu_2\ne\delta μ1μ2>δμ1μ2<δμ1μ2=δ z ⩾ z α z ⩽ − z α ∣ z ∣ ⩾ z α / 2 z\geqslant z_\alpha\\z\leqslant-z_\alpha\\\vert z\vert\geqslant z_{\alpha/2} zzαzzαzzα/2
4 4 4 μ 1 − μ 2 ⩽ δ μ 1 − μ 2 ⩾ δ μ 1 − μ 2 = δ ( σ 1 2 = σ 2 2 = σ 2 已知 ) \mu_1-\mu_2\leqslant\delta\\\mu_1-\mu_2\geqslant\delta\\\mu_1-\mu_2=\delta\\(\sigma_1^2=\sigma_2^2=\sigma^2\text{已知}) μ1μ2δμ1μ2δμ1μ2=δ(σ12=σ22=σ2已知) t = X ‾ − Y ‾ − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 t=\cfrac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{S_w\sqrt{\cfrac{1}{n_1}+\cfrac{1}{n_2}}}\\S_w^2=\cfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} t=Swn11+n21 XY(μ1μ2)Sw2=n1+n22(n11)S12+(n21)S22 μ 1 − μ 2 > δ μ 1 − μ 2 < δ μ 1 − μ 2 ≠ δ \mu_1-\mu_2>\delta\\\mu_1-\mu_2<\delta\\\mu_1-\mu_2\ne\delta μ1μ2>δμ1μ2<δμ1μ2=δ t ⩾ t α ( n 1 + n 2 − 1 ) t ⩽ − t α ( n 1 + n 2 − 1 ) ∣ t ∣ ⩾ t α / 2 ( n 1 + n 2 − 1 ) t\geqslant t_\alpha(n_1+n_2-1)\\t\leqslant-t_\alpha(n_1+n_2-1)\\\vert t\vert\geqslant t_{\alpha/2}(n_1+n_2-1) ttα(n1+n21)ttα(n1+n21)ttα/2(n1+n21)
5 5 5 σ 2 ⩽ σ 0 2 σ 2 ⩾ σ 0 2 σ 2 = σ 0 2 ( μ 未知 ) \sigma^2\leqslant\sigma^2_0\\\sigma^2\geqslant\sigma^2_0\\\sigma^2=\sigma^2_0\\(\mu\text{未知}) σ2σ02σ2σ02σ2=σ02(μ未知) χ 2 = ( n − 1 ) S 2 σ 0 2 \chi^2=\cfrac{(n-1)S^2}{\sigma^2_0} χ2=σ02(n1)S2 σ 2 > σ 0 2 σ 2 < σ 0 2 σ 2 ≠ σ 0 2 \sigma^2>\sigma^2_0\\\sigma^2<\sigma^2_0\\\sigma^2\ne\sigma^2_0 σ2>σ02σ2<σ02σ2=σ02 χ 2 ⩾ χ α 2 ( n − 1 ) χ 2 ⩽ χ 1 − α 2 ( n − 1 ) χ 2 ⩾ χ α / 2 2 ( n − 1 ) 或 χ 2 ⩽ χ 1 − α / 2 2 ( n − 1 ) \chi^2\geqslant\chi^2_\alpha(n-1)\\\chi^2\leqslant\chi^2_{1-\alpha}(n-1)\\\chi^2\geqslant\chi^2_{\alpha/2}(n-1)\text{或}\\\chi^2\leqslant\chi^2_{1-\alpha/2}(n-1) χ2χα2(n1)χ2χ1α2(n1)χ2χα/22(n1)χ2χ1α/22(n1)
6 6 6 σ 1 2 ⩽ σ 2 2 σ 1 2 ⩾ σ 2 2 σ 1 2 = σ 2 2 ( μ 1 , μ 2 未知 ) \sigma_1^2\leqslant\sigma^2_2\\\sigma_1^2\geqslant\sigma^2_2\\\sigma_1^2=\sigma^2_2\\(\mu_1,\mu_2\text{未知}) σ12σ22σ12σ22σ12=σ22(μ1,μ2未知) F = S 1 2 S 2 2 F=\cfrac{S_1^2}{S_2^2} F=S22S12 σ 1 2 > σ 2 2 σ 1 2 < σ 2 2 σ 1 2 ≠ σ 2 2 \sigma_1^2>\sigma^2_2\\\sigma_1^2<\sigma^2_2\\\sigma_1^2\ne\sigma^2_2 σ12>σ22σ12<σ22σ12=σ22 F ⩾ F α ( n − 1 ) F ⩽ F 1 − α ( n − 1 ) F ⩾ F α / 2 ( n − 1 ) 或 F ⩽ F 1 − α / 2 ( n − 1 ) F\geqslant F_\alpha(n-1)\\F\leqslant F_{1-\alpha}(n-1)\\F\geqslant F_{\alpha/2}(n-1)\text{或}\\F\leqslant F_{1-\alpha/2}(n-1) FFα(n1)FF1α(n1)FFα/2(n1)FF1α/2(n1)
  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值