【概率论】常用分布

离散分布

伯努利分布

分布: x ∼ B ( 1 , p ) x\sim B(1,p) xB(1,p)
均值: p p p
方差: p ( 1 − p ) p(1-p) p(1p)
概念:一次伯努利试验成功0次或者1次的概率

二项分布

分布: x ∼ B ( n , p ) , P ( x = k ) = C n k p k ( 1 − p ) ( n − k ) ( 1 ≤ k ≤ n ) x\sim B(n,p), P(x=k)=C_n^k p^k(1-p)^{(n-k)}(1\leq k \leq n) xB(n,p),P(x=k)=Cnkpk(1p)(nk)(1kn)
均值: n p np np
方差: n p ( 1 − p ) np(1-p) np(1p)
概念: n n n次伯努利试验成功 k k k次的概率。
意义:从 N N N个物品(A类物品占比 p p p)中有放回的抽样 n n n个物品,其中抽取的物品恰好包含 k k k个A类物品的概率。

泊松分布

分布: x ∼ P ( λ ) , P ( x = k ) = λ k e − λ k ! ( 0 ≤ k ) x\sim P(\lambda), P(x=k)=\frac{\lambda^ke^{-\lambda}}{k!}(0\leq k ) xP(λ),P(x=k)=k!λkeλ(0k)
均值: λ \lambda λ
方差: λ \lambda λ
概念:在一个给定的区间内,某种事件(事件在每一点发生与否是独立的,且每一点至多发生一次)发生的次数为 k k k的概率。这里 λ \lambda λ是与区间长度、事件发生密度相关的量。可以看作满足 n p = λ , n → ∞ np=\lambda,n\rightarrow\infty np=λn的二项分布,故均值、方差均为 λ \lambda λ

几何分布

分布: x ∼ G E ( p ) , P ( x = k ) = p ( 1 − p ) ( k − 1 ) ( k ≥ 1 ) x\sim GE(p),P(x=k)=p(1-p)^{(k-1)}(k\geq 1) xGE(p),P(x=k)=p(1p)(k1)(k1)
均值: 1 p \frac{1}{p} p1
方差: 1 − p p 2 \frac{1-p}{p^2} p21p
概念:在n次伯努利试验中,前k-1次皆失败,第k次成功的概率

超几何分布

分布: x ∼ H ( N , M , n ) , P ( x = k ) = C M k C N − M n − k C N n x\sim H(N, M, n), P(x=k)=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n} xH(N,M,n),P(x=k)=CNnCMkCNMnk
均值: n M N \frac{nM}{N} NnM
方差: n M N − ( n M N ) 2 + n ( n − 1 ) M ( M − 1 ) N ( N − 1 ) \frac{nM}{N}-(\frac{nM}{N})^2+\frac{n(n-1)M(M-1)}{N(N-1)} NnM(NnM)2+N(N1)n(n1)M(M1)
概念:从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件 k k k次的概率(不放回)
与二项分布的关系:当 N → ∞ N\rightarrow \infty N,超几何分布等价于二项分布 B ( n , M N ) B(n, \frac{M}{N}) B(n,NM)

softmax分布

对伯努利分布的推广

多项分布

P ( x 1 = m 1 , x 2 = m 2 , . . . , x n = m n ) = N ! m 1 ! m 2 ! . . . m n ! p 1 m 1 p 2 m 2 . . . p n m n P(x_1=m_1, x_2=m_2, ..., x_n=m_n)=\frac{N!}{m_1!m_2!...m_n!}p_1^{m_1}p2^{m_2}...p_n^{m_n} P(x1=m1,x2=m2,...,xn=mn)=m1!m2!...mn!N!p1m1p2m2...pnmn
概念:n次softmax试验

连续分布

均匀分布

分布: x ∼ U ( a , b ) x\sim U(a,b) xU(a,b)
均值: a + b 2 \frac{a+b}{2} 2a+b
方差: ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2

高斯分布

分布: x ∼ N ( μ , δ 2 ) , p ( x ) = 1 2 π δ 2 ( x − μ ) 2 δ 2 x\sim N(\mu, \delta^2), p(x)=\frac{1}{\sqrt{2\pi\delta^2}}\frac{(x-\mu)^2}{\delta^2} xN(μ,δ2),p(x)=2πδ2 1δ2(xμ)2
均值: μ \mu μ
方差: δ 2 \delta^2 δ2
扩展:高斯分布与L2正则化

指数分布

分布: x ∼ E ( λ ) , p ( x ) = λ e − λ x x\sim E(\lambda), p(x)=\lambda e^{-\lambda x} xE(λ),p(x)=λeλx
均值: 1 λ \frac{1}{\lambda} λ1
方差: 1 λ 2 \frac{1}{\lambda^2} λ21
意义:灯泡寿命
泊松分布是单位时间内独立事件发生次数的概率分布,指数分布是独立事件的时间间隔的概率分布(引用自http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html)

拉普拉斯分布

分布: x ∼ L a p l a c e ( μ , λ ) , p ( x ) = 1 2 λ e − ∣ x − μ ∣ λ x\sim Laplace(\mu, \lambda), p(x)=\frac{1}{2\lambda}e^{-\frac{|x-\mu|}{\lambda}} xLaplace(μ,λ),p(x)=2λ1eλxμ
均值: μ \mu μ
方差: 2 λ 2 2\lambda^2 2λ2
形状:相当于两个背靠背的指数分布
扩展:拉普拉斯分布于L1正则化

贝塔分布

分布: x ∼ B e t a ( x ∣ a , b ) , p ( x ) = Γ ( a + b ) Γ ( a ) Γ ( b ) x a − 1 ( 1 − x ) b − 1 x\sim Beta(x|a,b), p(x)=\frac{\Gamma (a+b)}{\Gamma (a)\Gamma (b)}x^{a-1}(1-x)^{b-1} xBeta(xa,b),p(x)=Γ(a)Γ(b)Γ(a+b)xa1(1x)b1
均值: a a + b \frac{a}{a+b} a+ba
方差: a b ( a + b ) 2 ( a + b + 1 ) \frac{ab}{(a+b)^2(a+b+1)} (a+b)2(a+b+1)ab
概念:关于连续变量 x ∈ [ 0 , 1 ] x\in[0,1] x[0,1]的概率分布
Γ ( a ) = ∫ 0 ∞ x a − 1 e − x d x \Gamma(a)=\int_{0}^{\infty}x^{a-1}e^{-x}dx Γ(a)=0xa1exdx

迪利克雷分布

分布: x ∼ D i r ( x ∣ α ) , p ( x ) = Γ ( α ^ ) Γ ( α 1 ) Γ ( α 2 ) . . . Γ ( α d ) ∏ i = 1 i = d x i α i − 1 x\sim Dir(x|\alpha), p(x)=\frac{\Gamma(\hat{\alpha})}{\Gamma(\alpha_1)\Gamma(\alpha_2)...\Gamma(\alpha_d)}\prod\limits_{i=1}^{i=d}x_i^{\alpha_i-1} xDir(xα),p(x)=Γ(α1)Γ(α2)...Γ(αd)Γ(α^)i=1i=dxiαi1,其中 α ^ = ∑ i = 1 i = d α i \hat{\alpha}=\sum\limits_{i=1}^{i=d}\alpha_i α^=i=1i=dαi
均值: E ( x i ) = α i α ^ E(x_i)=\frac{\alpha_i}{\hat{\alpha}} E(xi)=α^αi
方差: D ( x i ) = α i ( α ^ − α i ) α ^ 2 ( α ^ + 1 ) , c o v ( x i , x j ) = α i α j α ^ 2 ( α ^ + 1 ) D(x_i)=\frac{\alpha_i(\hat{\alpha}-\alpha_i)}{\hat{\alpha}^2(\hat{\alpha}+1)}, cov(x_i, x_j)=\frac{\alpha_i\alpha_j}{\hat{\alpha}^2(\hat{\alpha}+1)} D(xi)=α^2(α^+1)αi(α^αi),cov(xi,xj)=α^2(α^+1)αiαj
d = 2 d=2 d=2时,退化为贝塔分布
概念:一组关于 d d d个连续变量 x i ∈ [ 0 , 1 ] x_i\in[0,1] xi[0,1] ∑ i = 1 i = d x i = 1 \sum\limits_{i=1}^{i=d} x_i=1 i=1i=dxi=1的概率分布

共轭分布

简单的对应关系

从二值到多值,伯努利分布–>softmax分布,二项分布–>多项分布
从随机变量到参数,伯努利分布的参数–>贝塔分布,softmax分布的参数–>迪利克雷分布

共轭分布

概念:设随机变量 x ∼ p ( x ∣ θ ) x\sim p(x|\theta) xp(xθ),参数 θ ∼ Π ( θ ) \theta\sim\Pi(\theta) θΠ(θ),给定观测样本,后验分布 p ( θ ∣ X ) p(\theta|X) p(θX)与先验分布 Π ( θ ) \Pi(\theta) Π(θ)是同一种类型,则称先验分布 Π ( θ ) \Pi(\theta) Π(θ)为关于 p ( x ∣ θ ) p(x|\theta) p(xθ)的共轭分布。

优点:共轭分布可以使得问题得以简化。比如当随机变量服从伯努利分布且参数服从Beta分布时,给定观测样本后,只需要更新Beta分布的参数即可对模型进行更新

常用共轭分布表

p ( x ∥ θ ) p(x\|\theta) p(xθ) Π ( θ ) \Pi(\theta) Π(θ)
伯努利分布 (二项分布)贝塔分布
softmax分布 (多项分布)迪利克雷分布
高斯分布高斯分布
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值