求n阶对称矩阵中aij的位置

若n阶对称阵A以行为主存储其下三角元素,存储于B[1..n(n+1)/2]中,则在B中确定aij(i<j)的位置()

分析:

对于下三角阵,i>j;对于上三角阵,i<j。因为是对称阵,所以aij=aji,aji前面存储的元素总个数为:

(1+2+3+…+(j-1))+i-1=j(j-1)/2+i-1,因为存储于B[1..n(n+1)/2]中,所以aij=aji=j(j-1)/2+i

答案为:aij=aji=j(j-1)/2+i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值