tensorflow底层架构

tensorflow底层架构

架构图

在这里插入图片描述

  1. Training libraries 和 Inference libs(训练库和推理库)
  • Training libraries:用于模型的训练过程,包括定义模型、计算梯度、更新模型权重等。这些库提供了在训练过程中所需的所有功能。
  • Inference libs:用于模型的推理过程,主要用于在训练完成后将模型应用于实际数据的预测任务。
  1. Python client 和 C++ client
  • Python client:Python 是 TensorFlow 的主要接口,用户通常通过 Python 来定义计算图、构建模型和执行操作。Python API 易于使用,适合快速开发和原型设计。
  • C++ client:C++ API 提供更高的性能,适用于高效执行深度学习模型的推理任务,特别是在需要高性能的情况下,比如在嵌入式系统或生产环境中。
  1. C API
  • C API:这是一个底层的接口,提供对 TensorFlow 核心功能的访问。C API 允许不同的客户端(如 Python 和 C++)与 TensorFlow 系统进行交互,执行各种计算任务。
  1. Distributed master 和 Dataflow executor(分布式主节点和数据流执行器)
  • Distributed master:在分布式计算中,TensorFlow 的分布式主节点负责管理不同设备上的计算任务,协调它们之间的数据传输和工作负载分配。这允许模型训练和推理能够在多台机器或多种设备上进行。
  • Dataflow executor:数据流执行器负责执行计算图中的操作。在 TensorFlow 中,计算被表示为有向无环图(DAG),每个节点代表一个操作(算子)。数据流执行器遍历图,并按顺序执行每个操作。
  1. Kernel implementations(内核实现)
  • 这一层展示了 TensorFlow 内核中不同算子的实现,包括࿱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值