import tensorflow as tf
import numpy as np
from tensorflow.keras import layers, models, optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 定义 VGG16 模型
class VGG16(tf.keras.Model):
def __init__(self, num_classes=2):
super(VGG16, self).__init__()
self.features = models.Sequential([
layers.Conv2D(64, (3, 3), padding='same', activation='relu', input_shape=(224, 224, 3)),
layers.MaxPooling2D((2, 2), strides=(2, 2)),
layers.Conv2D(128, (3, 3), padding='same', activation='relu'),
layers.MaxPooling2D((2, 2), strides=(2, 2)),
layers.Conv2D(256, (3, 3), padding='same', activation='relu'),
layers.Conv2D(256, (3, 3), padding='same', activation='relu'),
layers.MaxPooling2D((2, 2), strides=(2, 2)),
layers.Conv2D(512, (3, 3), padding='same', activation='relu'),
layers.Conv2D(512, (3, 3), padding='same', activation='relu'),
layers.MaxPooling2D((2, 2), strides=(2, 2)),
layers.Conv2D(512, (3, 3), padding='same', activation='relu'),
layers.Conv2D(512, (3, 3), padding='same', activation='relu'),
layers.MaxPooling2D((2, 2), strides=(2, 2)),
])
self.classifier = models.Sequential([
layers.Flatten(),
layers.Dense(4096, activation='relu'),
layers.Dropout(0.5),
layers.Dense(4096, activation='relu'),
layers.Dropout(0.5),
layers.Dense(num_classes, activation='softmax'),
])
def call(self, x):
x = self.features(x)
x = self.classifier(x)
return x
# 使用 ImageDataGenerator 加载并预处理数据集
data_dir = 'data'
input_shape = (224, 224)
batch_size = 4
train_datagen = ImageDataGenerator(
rescale=1.0/255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
val_datagen = ImageDataGenerator(rescale=1.0/255)
train_gen = train_datagen.flow_from_directory(
directory=f'{data_dir}/train',
target_size=input_shape,
batch_size=batch_size,
class_mode='binary'
)
val_gen = val_datagen.flow_from_directory(
directory=f'{data_dir}/validation',
target_size=input_shape,
batch_size=batch_size,
class_mode='binary'
)
# 初始化模型、优化器和损失函数
model = VGG16(num_classes=2)
# 构建模型结构(明确指定输入形状)
model.build(input_shape=(None, 224, 224, 3)) # None 表示动态批次大小
# 查看模型结构
model.summary()
model.compile(optimizer=optimizers.Adam(learning_rate=0.0001),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练循环
epochs = 20
steps_per_epoch = train_gen.samples // batch_size
validation_steps = val_gen.samples // batch_size
for epoch in range(epochs):
print(f"=========== Epoch {epoch + 1} ==============")
history = model.fit(train_gen,
steps_per_epoch=steps_per_epoch,
validation_data=val_gen,
validation_steps=validation_steps,
epochs=1)
train_loss = history.history['loss'][0]
val_loss = history.history['val_loss'][0]
val_accuracy = history.history['val_accuracy'][0]
print(f"训练集上的损失:{train_loss}")
print(f"验证集上的损失:{val_loss}")
print(f"验证集上的精度:{val_accuracy:.1%}")
# 保存模型
model.save_weights(f"Adogandcat_epoch_{epoch + 1}.h5")
print("模型权重已保存。")
#预测部分
# 定义和加载 VGG16 模型
vgg16 = VGG16(num_classes=2)
vgg16.build(input_shape=(None, 224, 224, 3))
vgg16.load_weights('Adogandcat_epoch_20.h5') # 替换为训练好的 VGG16 权重路径
# 加载和预处理图像
def load_and_preprocess_image(image_path, target_size=(224, 224)):
img = load_img(image_path, target_size=target_size) # 加载图像并调整大小
img_array = img_to_array(img) # 转换为 NumPy 数组
img_array = np.expand_dims(img_array, axis=0) # 添加批次维度
img_array = preprocess_input(img_array) # VGG16 所需的标准化
return img, img_array
# 预测和显示图像
def predict_and_display(image_path, model, model_name):
# 加载图像
original_img, processed_img = load_and_preprocess_image(image_path)
# 预测类别
predictions = model(processed_img, training=False)
predicted_class = np.argmax(predictions, axis=1)[0]
confidence = predictions[0][predicted_class]
# 显示结果
plt.figure(figsize=(6, 6))
plt.imshow(original_img)
plt.axis('off')
plt.title(f"Model: {model_name}\nPredicted Class: {predicted_class}\nConfidence: {confidence:.2f}")
plt.show()
# 测试图像路径
image_path = 'data/test/1.jpg' # 替换为实际图像路径
# 使用 CustomCNN 预测
predict_and_display(image_path, custom_cnn, "Custom CNN")
# 使用 VGG16 预测
predict_and_display(image_path, vgg16, "VGG16")
训练结果:
运行时间:46 mins. Found 18750 images belonging to 2 classes. Found 6250 images belonging to 2 classes. 2024-11-22 00:51:58.211251: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-11-22 00:51:58.612873: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 38404 MB memory: -> device: 0, name: NVIDIA A100-SXM4-40GB, pci bus id: 0000:4b:00.0, compute capability: 8.0 =========== Epoch 1 ============== 4687/4687 [==============================] - 140s 29ms/step - loss: 0.6943 - accuracy: 0.5031 - val_loss: 0.6932 - val_accuracy: 0.5010 训练集上的损失:0.6943416595458984 验证集上的损失:0.6932020783424377 验证集上的精度:50.1% 模型已保存。 =========== Epoch 2 ============== 4687/4687 [==============================] - 138s 29ms/step - loss: 0.6843 - accuracy: 0. |